分析 (1)直接利用角平分线的做法得出符合题意的图形;
(2)直接利用角平分线的性质结合全等三角形的判定与性质得出BC=BE,进而得出DC的长.
解答 解:
(1)如图所示:
(2)过点D作DE⊥AB,垂足为点E,
∵点D到边AB和边BC的距离相等,
∴BD平分∠ABC.(到角的两边距离相等的点在这个角的平分线上)
∵∠C=90°,DE⊥AB,
∴DC=DE.(角平分线上的点到角的两边的距离相等)
在Rt△CBD和Rt△EBD中,$\left\{\begin{array}{l}CD=DE\\ BD=BD\end{array}\right.$
∴Rt△CBD≌Rt△EBD(HL),
∴BC=BE.
∵在△ABC中,∠C=90°,
∴AB2=BC2+AC2.(勾股定理)
∵AC=6cm,AB=10cm,
∴BC=8cm.
∴AE=10-8=2cm.
设DC=DE=x,
∵AC=6cm,
∴AD=6-x.
∵在△ADE中,∠AED=90°,
∴AD2=AE2+DE2.(勾股定理)
∴(6-x)2=22+x2.
解得:$x=\frac{8}{3}$.
即CD的长是$\frac{8}{3}$.
点评 此题主要考查了基本作图以及勾股定理和全等三角形的判定与性质,正确应用勾股定理是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com