精英家教网 > 初中数学 > 题目详情
如图,设O为△ABC内一点,连接AO、BO、CO,并延长交BC、CA、AB于点D、E、F,已知S△AOB:S△BOC:S△AOC=3:4:6.则
OD
AO
OE
BO
OF
CO
等于(  )
分析:先根据S△AOB:S△BOC:S△AOC=3:4:6进行转化成S△AOB:S△ABC与S△BOC:S△ABCS△AOC:S△ABC的比值,根据它的比值即可求出答案.
解答:解:∵S△AOB:S△BOC:S△AOC=3:4:6,
∴S△AOB:S△ABC=3:13,S△BOC:S△ABC=4:13,S△AOC:S△ABC=6:13,
OF
CF
=
3
13
OD
AD
=
4
13
OE
BE
=
6
13

OF
CO
=
3
10
OD
AO
=
4
9
OE
BO
=
6
7

OD
AO
OE
BO
OF
CO
=
3
10
×
4
9
×
6
7
=
4
35

故选:B.
点评:此题考查了面积及等积变换;解题的关键是根据已知条件进行等积转换,再进行解答即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,设P为△ABC外一点,P在边AC之外,在∠B之内.S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三边a,b,c上的高为ha=3,hb=5,hc=6,则P到三边的距离之和为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,设O为△ABC内一点,且∠AOB=∠BOC=∠COA=120°,P为任意一点(不是O).求证:PA+PB+PC>OA+OB+OC.

查看答案和解析>>

科目:初中数学 来源:2011年四川省南充市高坪中学九年级数学竞赛试卷(解析版) 题型:填空题

如图,设P为△ABC外一点,P在边AC之外,在∠B之内.S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三边a,b,c上的高为ha=3,hb=5,hc=6,则P到三边的距离之和为   

查看答案和解析>>

科目:初中数学 来源:2000年第12届“五羊杯”初中数学竞赛初三试卷(解析版) 题型:填空题

如图,设P为△ABC外一点,P在边AC之外,在∠B之内.S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三边a,b,c上的高为ha=3,hb=5,hc=6,则P到三边的距离之和为   

查看答案和解析>>

同步练习册答案