精英家教网 > 初中数学 > 题目详情
(2012•广州)如图,正比例函数y1=k1x和反比例函数y2=
k2
x
的图象交于A(-1,2)、B(1,-2)两点,若y1<y2,则x的取值范围是(  )
分析:根据图象找出直线在双曲线下方的x的取值范围即可.
解答:解:由图象可得,-1<x<0或x>1时,y1<y2
故选D.
点评:本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•广州)如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,抛物线y=-
3
8
x2-
3
4
x+3
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.

查看答案和解析>>

同步练习册答案