精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AD=DC,BAD=32°,则C=________.

【答案】37°

【解析】由题,ABC中,AB=AD, BAD=32°,所以B=BDA=(180°-BAD)= 74°,因为AD=DC,所以C=CAD,因为BDA为ADC的一个外角,所以BDA=C+CAD=2C,故C=37°.

试题三角形的一个外角等于与它不相邻的两个内角和,由题,ABC中,AB=AD, BAD=32°,所以B=BDA=(180°-BAD)= 74°,因为AD=DC,所以C=CAD,因为BDA为ADC的一个外角,所以BDA=C+CAD=2C,故C=37°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A从坐标原点出发,沿x轴的正方向运动,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.

(1)当点C与点E恰好重合时,求t的值;
(2)当t为何值时,BC取得最小值;
(3)设△BCE的面积为S,当S=6时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据问题填空:
(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为

(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;

(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABCPQ分别是BCAC上的点PRABPSAC垂足分别是RSAQ=PQPR=PS下面三个结沦:AS=AR:②QPAR;③△BRP≌△CSP.其中正确的是( )

A. ①③ B. ②③ C. ①② D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按图2的形状拼成一个正方形.

1)写出图2的阴影部分的正方形的边长.

2)用两种不同的方法求图中的阴影部分的面积.

3)观察如图2,写出这三个代数式之间的等量关系.

4)根据(3)题中的等量关系,解决问题:若的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,按以下步骤作图:
①以C为圆心,以适当长为半径画弧交AC于E,交BC于F.
②分别以E,F为圆心,以大于 EF的长为半径作弧,两弧相交于P;
③作射线CP交AB于点D,
若AC=3,BC=4,则△ACD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形ABCD中,AD=5,AB=6,点E为DC上一个动点,把△ADE沿AE折叠,点D的对应点为F,当△DFC是等腰三角形时,DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线射向一个水平镜面后被反射,此时有.如图2,一束光线射到平面镜上,被平面镜反射到平面镜上,又被镜反射,若平面镜反射出的光线平行于光线

1)当,求的度数;

2)求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax﹣1的图象与反比例函数y= 的图象交于A(3,1),B两点,与x轴交于点C,与y轴交于点D.

(1)求a,k的值及点B的坐标;
(2)直接写出不等式ax﹣1≥ 的解集;
(3)在x轴上存在一点P,使得△POA与△OAC相似(不包括全等),请你求出点P的坐标.

查看答案和解析>>

同步练习册答案