精英家教网 > 初中数学 > 题目详情
15.如图,边长为1的正方形ABCD顶点A(0,1),B(1,1);一抛物线y=ax2+bx+c过点M(-1,0)且顶点在正方形ABCD内部(包括在正方形的边上),则a的取值范围是(  )
A.-2≤a≤-1B.-2≤a≤-$\frac{1}{4}$C.-1≤a≤-$\frac{1}{2}$D.-1≤a≤-$\frac{1}{4}$

分析 当顶点与A点重合,可以知道顶点坐标为(0,1)且抛物线过(-1,0),由此可求出a;当顶点与C点重合,顶点坐标为(1,2)且抛物线过(-1,0),由此也可求a,然后由此可判断a的取值范围.

解答 解:
解:∵顶点是矩形ABCD上(包括边界和内部)的一个动点,
∴当顶点与A点重合,顶点坐标为(0,1),则抛物线解析式y=ax2+1,
∵抛物线过M(-1,0),
∴0=a+1,解得a=-1,
当顶点与C点重合,顶点坐标为(1,2),则抛物线解析式y=a(x-1)2+2,
∵抛物线过M(-1,0),
∴0=4a+2,解得a=-$\frac{1}{2}$
∵顶点可以在矩形内部,
∴-1≤a≤-$\frac{1}{2}$.
故选C.

点评 本题主要考查了抛物线的解析式y=ax2+bx+c中a、b、c对抛物线的影响,在对于抛物线的顶点在所给图形内进行运动的判定,充分利用了利用形数结合的方法,展开讨论,加以解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.若y-4与x成正比例,且x=1时,y=8.
(1)求y关于x的函数解析式:
(2)画出(1)中函数图象,若图象与x轴交于点A,与y轴交于点B,又知C(5,-1),求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在6米高的路灯下,身高1.5米的哥哥的影长为1米,身高1.2米的弟弟的影长为2米,那么哥哥和弟弟之间的距离x的取值是5米或11米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.一列火车用26秒的时间通过了一个长为256米的隧道(即从车头进入入口到车尾离开出口),又以相同的速度用了16秒的时间通过了长为96米的隧道,求这列火车的长度.若设这列火车长度为x米,则由题意可列方程为$\frac{256+x}{26}=\frac{96+x}{16}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若抛物线y=ax2+bx+c(a≠0)的顶点是A(2,1),且经过点B(1,0),则抛物线对应的函数表达式为y=-x2+4x-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若抛物线y=-x2+4x+m的顶点,坐标是(2,-3),则m=-7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.方程组$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}-2y+2=0}\\{{x}^{2}+2xy+{y}^{2}-x-y-2=0}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,AB是半圆O的直径,且AB=4,点P(不与点A、B重合)为半圆上一点.将图形沿BP折叠,分别得到点A、O的对称点A′,O′.设∠ABP=α.
(1)当α=10°时,∠ABA′=20°,当点O′落在$\widehat{PB}$上时,α的度数为30°;
(2)如图2,当BA′与⊙O相切时,求折痕的长;
(3)若线段BO′与半圆只有一个公共点B,确定α的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知∠ABC和点P.
操作与思考:
(1)在图1中用三角尺或量角器过点P分别作PE⊥AB,PF⊥BC,垂足分别为E,F,度量∠B和∠P的度数,猜想它们之间的数量关系是互补;
(2)在图2中用三角尺或量角器过点P分别作PE⊥AB,PF⊥BC,垂足分别为E,F,度量∠B和∠P的度数,猜想它们之间的数量关系是相等;
(3)如图3,已知点P在∠ABC的边AB上,MN⊥AB于点P,请用三角尺或量角器过点P作PF⊥BC,垂足为F,度量∠B和∠MPF的度数.猜想它们之间的数量关系是相等或互补;
探究与猜想:
(4)由上述三种情形,通过调节可以发现一个猜想:如果一个角的两边分别和另一个角的两边垂直,那么这两个角相等或互补;(不要求写出理由)
(5)如图4,为了验证猜想,若已知∠ABC为钝角,请你模仿上述三种情形之一,任取一点P,作出图形,根据图形写出结论.(只作出图形和写出结论)

查看答案和解析>>

同步练习册答案