精英家教网 > 初中数学 > 题目详情

如图,在等边△ABC中,AH⊥BC,垂足为H,且AH=6cm,点D是AB的中点,点P是AH上一动点,则DP与BP和的最小值是________cm.

6
分析:作点B关于AH的对称点B′,由等边三角形的性质可知B′与点C重合,连接CD,则CD的长度即为DP与BP和的最小值,由等边三角形的性质可求出△CAD≌△ACH,则CD=AH=6cm.
解答:解:作点B关于AH的对称点B′,
∵△ABC是等边三角形,
∴B′与点C重合,连接CD,则CD的长度即为DP与BP和的最小值,
∵△ABC是等边三角形,D为AB的中点,
∴CD⊥AB,∠ACD=30°,
∵AH⊥BC,
∴∠CAH=30°,AC=AC,
∴△CAD≌△ACH,
∴CD=AH=6cm.
故答案为:6.
点评:本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案