25
分析:首先过点A作AD⊥BC于D,可得∠ADP=∠ADB=90°,又由AB=AC,根据三线合一的性质,可得BD=CD,由勾股定理可得PA
2=PD
2+AD
2,AD
2+BD
2=AB
2,然后由AP
2+PB•PC=AP
2+(BD+PD)(CD-PD),即可求得答案.
解答:
解:过点A作AD⊥BC于D,
∵AB=AC=5,∠ADP=∠ADB=90°,
∴BD=CD,PA
2=PD
2+AD
2,AD
2+BD
2=AB
2,
∴AP
2+PB•PC=AP
2+(BD+PD)(CD-PD)=AP
2+(BD+PD)(BD-PD)=AP
2+BD
2-PD
2=AP
2-PD
2+BD
2=AD
2+BD
2=AB
2=25.
故答案为25.
点评:本题考查了勾股定理与等腰三角形的性质的正确及灵活运用.注意得到AP
2+PB•PC=AP
2+(BD+PD)(CD-PD)是解此题的关键.