精英家教网 > 初中数学 > 题目详情
(2013•重庆)已知,如图,在?ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.
(1)若CF=2,AE=3,求BE的长;
(2)求证:∠CEG=
12
∠AGE.
分析:(1)求出DC=CE=2CF=4,求出AB,根据勾股定理求出BE即可;
(2)过G作GM⊥AE于M,证△DCF≌△ECG,推出CG=CF,求出M为AE中点,得出等腰三角形AGE,根据性质得出GM是∠AGE的角平分线,即可得出答案.
解答:(1)解:∵CE=CD,点F为CE的中点,CF=2,
∴DC=CE=2CF=4,
∵四边形ABCD是平行四边形,
∴AB=CD=4,
∵AE⊥BC,
∴∠AEB=90°,
在Rt△ABE中,由勾股定理得:BE=
42-32
=
7


(2)证明:过G作GM⊥AE于M,
∵AE⊥BE,
∴GM∥BC∥AD,
∵在△DCF和△ECG中,
∠1=∠2
∠C=∠C
CD=CE

∴△DCF≌△ECG(AAS),
∴CG=CF,
∵CE=CD,CE=2CF,
∴CD=2CG
即G为CD中点,
∵AD∥GM∥BC,
∴M为AE中点,
∵GM⊥AE,
∴AM=EM,
∴∠AGE=2∠MGE,
∵GM∥BC,
∴∠EGM=∠CEG,
∴∠CEG=
1
2
∠AGE.
点评:本题考查了平行四边形性质,等腰三角形的性质和判定,平行线分线段成比例定理,全等三角形的性质和判定,勾股定理等知识点的应用,主要考查学生综合运用定理进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•重庆)已知∠A=65°,则∠A的补角等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.
(1)求△AED的周长;
(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;
(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积比为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的解析式为(  )

查看答案和解析>>

同步练习册答案