精英家教网 > 初中数学 > 题目详情

如图,平面直角坐标系中,四边形OABC为菱形,点A在x轴的正半轴上,BC与y轴较于点D,点C的坐标为(-3,4).
(1)点A的坐标为______;
(2)求过点A、O、C的抛物线解析式,并求它的顶点坐标;
(3)在直线AB上是否存在点P,使得一点A、O、P为顶点的三角形与△COD相似?若存在,求出点P的坐标;若不存在,请说明理由.

解:(1)∵四边形OABC为菱形,
∴BC∥OA,OC=OA=BC,
∵OD⊥OA,
∴OD⊥BC,
∵C(-3,4),
∴CD=3,OD=4,
∴OC==5,
∴A(5,0).
故答案为:(5,0);

(2)设抛物线的解析式为y=ax(x-5),
把C(-3,4)代入得24a=4,
解得a=
则y=x(x-5)=x2-x.
∵y=(x-2-
∴顶点坐标为(,-);

(3)∵∠OCD=∠OAB,∠ODC=90°,OC=5,OD=4,CD=3,
∴分两种情况:
①当∠AOP=∠ODC=90°(点P在y轴上)时,△APO∽△COD,
=,即=
解得PO=,此时P(0,);
②当∠OPA=∠ODC=90°时,△AOP≌△COD,则OP=OD=4,
过点P作PM⊥x轴,垂足为M,则△OPM∽△OCD,
==,可得PM=,OM=,此时P();
综上所述,存在符合要求的点P,它的坐标为(0,)或().
分析:(1)由菱形的性质得OC=OA=BC,则OD⊥BC,由勾股定理得出OC,即可求出点A的坐标;
(2)设抛物线的解析式为y=ax(x-5),把C(-3,4)代入,解方程求得a的值,即可得出抛物线的解析式;
(3)由菱形的对角相等可知∠OCD=∠OAB,则以点A、O、P为顶点的三角形与△COD相似时,分两种情况:①当∠AOP=∠ODC=90°(点P在y轴上)时,△APO∽△COD;②当∠OPA=∠ODC=90°时,△AOP≌△COD,根据相似三角形的性质即可求解.
点评:本题是一道二次函数的综合题,考查了菱形的性质、用待定系数法求二次函数的解析式以及相似三角形的性质,注意分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平面直角坐标系中,O为直角三角形ABC的直角顶点,∠B=30°,锐角顶点A在双曲线y=
1x
上运动,则B点在函数解析式
 
上运动.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB精英家教网=2
3

(1)求⊙P的半径.
(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,则点O的对应点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足
a+2
+|b-2|+(c-b)2=0
.点D为线段OA上一动点,连接CD.
(1)判断△ABC的形状并说明理由;
(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:
S△CAD
S△DGH
=
AD
GH

(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案