精英家教网 > 初中数学 > 题目详情

已知α,β是一元二次方程x2-4x-3=0的两实数根,则代数式(α-3)(β-3)=________.

-6
分析:根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据(α-3)(β-3)=αβ-3(α+β)+9代入数值计算即可.
解答:∵α,β是方程x2-4x-3=0的两个实数根,
∴α+β=4,αβ=-3
又∵(α-3)(β-3)=αβ-3(α+β)+9
∴(α-3)(β-3)=-3-3×4+9=-6.
故填空答案:-6.
点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:
①当x
>1
>1
时,函数值随着x的增大而减小;
②关于x的一元二次不等式ax2=bx+c>0的解是
-1<x<3
-1<x<3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图所示),其中图象与横轴的正半轴交点为(2,0),由图象可知:
①当x
<-1
<-1
时,函数值随着x的增大而减小;
②关于x的一元二次不等式ax2+bx+c>0的解是
x>2或x<-4
x>2或x<-4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一元二次不等式ax2+bx+c>0的解是
 

查看答案和解析>>

同步练习册答案