精英家教网 > 初中数学 > 题目详情

如图,抛物线轴交于两点,与轴交于点.

(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;
(2)经探究可知,的面积比不变,试求出这个比值;
(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.

解析试题分析:(1)将抛物线的解析式化为顶点坐标式,即可得到顶点M的坐标;抛物线的解析式中,令y=0,可求得A、B的坐标.
(2)易求得C点坐标,即可得到OC的长,以AB为底,OC为高,即可求出△ABC的面积;△BCM的面积无法直接求得,可用割补法求解,过M作MD⊥x轴于D,根据B、C、M四点坐标,可分别求出梯形OCMD、△BDM的面积,它们的面积和减去△BOC的面积即为△BCM的面积,进而可得到△ABC、△BCM的面积比.
(3)首先根据B、C、M的坐标,求出BC2、BM2、CM2的值,由于△BCM中,B、C、M都有可能是直角顶点,所以要分三种情况讨论:①∠BCM=90°,②∠BMC=90°,③∠MBC=90°,在上述三种不同的直角三角形中,利用勾股定理可求得m的值,进而可确定抛物线的解析式.
(1)
抛物线顶点的坐标为(1,m)
抛物线轴交于两点,
时,

解得
两点的坐标为()、();
(2)当时,
的坐标为.
5分
过点轴于点,则



=
=
=3m

(3)存在使为直角三角形的抛物线.
过点于点,则


中,
中,
①如果,且那么

解得

存在抛物线使得
②如果,且那么

解得

存在抛物线,使得
③如果,且,那么

整理得此方程无解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。(14分)

(1)求抛物线的解析式;

(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;

(3)点在(1)中抛物线上,

为抛物线上一动点,在轴上是

否存在点,使以为顶

点的四边形是平行四边形,如果存在,

求出所有满足条件的点的坐标,

若不存在,请说明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线轴交于两点,与轴相交于点.连结AC、BC,B、C两点的坐标分别为B(1,0)、,且当x=-10和x=8时函数的值相等.

 

 

1.求a、b、c的值;

2.若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.连结,将沿翻折,当运动时间为几秒时,点恰好落在边上的处?并求点的坐标及四边形的面积;

3.上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线轴交于A、B两点,与轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.

(1)求C点的坐标及抛物线的解析式;

(2)将△BCH绕点B按顺时针旋转90º后再沿轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;

(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.                                                                                     

       

查看答案和解析>>

科目:初中数学 来源:2012届仙师中学九年级第一次月考试考试数学卷 题型:选择题

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。(14分)

(1)求抛物线的解析式;

(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;

(3)点在(1)中抛物线上,

为抛物线上一动点,在轴上是

否存在点,使以为顶

点的四边形是平行四边形,如果存在,

求出所有满足条件的点的坐标,

若不存在,请说明理由。

 

 

查看答案和解析>>

同步练习册答案