精英家教网 > 初中数学 > 题目详情
已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.
(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);
(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.
(1)y=x﹣5
(2)M的坐标为(,0)或(,0)
(3)存在,

试题分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.
(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.
(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.
解:(1)过点P作PH∥OA,交OC于点H,如图1所示.
∵PH∥OA,
∴△CHP∽△COA.
==
∵点P是AC中点,
∴CP=CA.
∴HP=OA,CH=CO.
∵A(3,0)、C(0,4),
∴OA=3,OC=4.
∴HP=,CH=2.
∴OH=2.
∵PH∥OA,∠COA=90°,
∴∠CHP=∠COA=90°.
∴点P的坐标为(,2).
设直线DP的解析式为y=kx+b,
∵D(0,﹣5),P(,2)在直线DP上,


∴直线DP的解析式为y=x﹣5.
(2)①若△DOM∽△ABC,图2(1)所示,
∵△DOM∽△ABC,
=
∵点B坐标为(3,4),点D的坐标为(0.﹣5),
∴BC=3,AB=4,OD=5.
=
∴OM=
∵点M在x轴的正半轴上,
∴点M的坐标为(,0)
②若△DOM∽△CBA,如图2(2)所示,
∵△DOM∽△CBA,
=
∵BC=3,AB=4,OD=5,
=
∴OM=
∵点M在x轴的正半轴上,
∴点M的坐标为(,0).
综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).
(3)∵OA=3,OC=4,∠AOC=90°,
∴AC=5.
∴PE=PF=AC=
∵DE、DF都与⊙P相切,
∴DE=DF,∠DEP=∠DFP=90°.
∴S△PED=S△PFD
∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.
∵∠DEP=90°,
∴DE2=DP2﹣PE2.=DP2
根据“点到直线之间,垂线段最短”可得:
当DP⊥AC时,DP最短,
此时DE取到最小值,四边形DEPF的面积最小.
∵DP⊥AC,
∴∠DPC=90°.
∴∠AOC=∠DPC.
∵∠OCA=∠PCD,∠AOC=∠DPC,
∴△AOC∽△DPC.
=
∵AO=3,AC=5,DC=4﹣(﹣5)=9,
=
∴DP=
∴DE2=DP2=(2=
∴DE=
∴S四边形DEPF=DE=
∴四边形DEPF面积的最小值为

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于C点,sinA=,OA=10cm,则AB长为        cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形铁皮上剪下圆形和扇形,使之恰好围成如图所示的圆锥模型,设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是(  )
A.2r=RB.
9
4
r=R
C.3r=RD.4r=R

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A、B在⊙O上,且AB=BO.∠ABO的平分线与AO相交于点C,若AC=3,则⊙O的周长为______.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,MN为⊙O的弦,∠M=50°,则∠MON等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,半径为6cm的⊙O中,C,D为直径AB的三等分点,点E,F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连结AE,BF,则图中两个阴影部分的面积为   cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P在以AB为直径的半圆内,连AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法正确的是:

①AC垂直平分BF;②AC平分∠BAF;③PF⊥AB;④BD⊥AF.
A.①②       B.①④        C.②④       D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为(  )
A.3πB.3C.6πD.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明投铅球,铅球着地后落在图中点A处,试估计小明投铅球的成绩.

查看答案和解析>>

同步练习册答案