精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,AD是BC边上的高,点E、F分别是AB边和AC边上的动点,且∠EDF=90°.
(1)求DE:DF的值;
(2)连接EF,设点B与点E间的距离为x,△DEF的面积为y,求y关于x的函数解析式,并写出x的取值范围;
(3)设直线DF与直线AB相交于点G,△EFG能否成为等腰三角形?若能,请直接写出线段BE的长;若不能,请说明理由.
作业宝

解:(1)∵∠BAC=90°,
∴∠B+∠C=90°,
∵AD是BC边上的高,
∴∠DAC+∠C=90°
∴∠B=∠DAC,
∴∠BDE+∠EDA=∠ADF+∠EDA=90°
∴∠BDE=∠ADF,
∴△BED∽△AFD,

=cotB==
∴DE:DF=

(2)由△BED∽△AFD,得=
∴AF=BE,
∵BE=x,
∴AF=x,AE=3-x,
∵∠BAC=90°,
∴EF2=(3-x)2+(x)2=
∵DE:DF=3:4,∠EDF=90°,
∴ED=EF,DF=EF,
∴y=ED•FD=EF2
∴y=x2-x+(0≤x≤3)


(3)如图,得:
①在等腰△EFG中,EF=EG,
∴∠G=∠EFG,
∵∠EAF=∠EDF=90°
∴A、E、D、F四点共圆,
∴∠BAD=∠EFG
∴∠BAD=∠G,
∴AD=DG
又∵DF=DG
∴DF=AD,∠ADB=∠EDF,
∴△BAD≌△EFD
∴EF=AB
∴EF2=AB2
=9
解得x=
∴BE=
②若EF=GF,
∵EF=FG,EA⊥AC
∴A为EG中点
∴AE=AD,
∵AB=3,AD=
∴BE=3-=
∴△EFG能成为等腰三角形,BE的长为
分析:(1)首先由勾股定理求出BC和CD,再利用三角形相似就可以求出结论.
(2)由条件把AE、AF用含x的式子表示出来,由勾股定理把EF表示出来,再根据(1)的结论把DE、DF用含EF的式子表示出来,根据直角三角形的面积公式就可以求出y的表达式.
(3)如图,根据线段的数量关系和勾股定理就可以求出BE的值.
点评:本题考查了相似三角形的判定与性质,三角形的面积,等腰三角形的判定,勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案