【题目】如图,在△ABC中,AB=6,AC=10,BC边上的中线AD=4,则△ABC的面积为___________;
【答案】24
【解析】
延长AD到E,使DE=AD,连接CE,如图所示,由D为BC的中点,得到CD=BD,再由一对对顶角相等,利用SAS得出△ADB与△EDC全等,由全等三角形的对应边相等得到AB=CE,由AE=2AD,AB的长,利用勾股定理的逆定理得到△ACE为直角三角形,即AE垂直于CE,利用垂直定义得到一对直角相等,△ABC的面积等于△ACE的面积,利用三角形的面积公式即可得出结论.
延长AD到E,使DE=AD,连接CE.
∵D为BC的中点,∴DC=BD.
在△ADB与△EDC中,∵,∴△ADB≌△EDC(SAS),∴CE=AB=6.
又∵AE=2AD=8,AB=CE=6,AC=10,∴AC2=AE2+CE2,∴∠E=90°,则S△ABC=S△ACE=CEAE=×6×8=24.
故答案为:24.
科目:初中数学 来源: 题型:
【题目】(1)如图①,在边长为1个单位长度的小正方形组成的网络中,给出了格点△ABC(顶点是网络线的交点)和点A1.画出一个格点A1B1C1,使它与△ABC全等且A与A1是对应点;
(2)如图②,已知△ABC 的三个顶点的坐标分别为A(-3,-3),B(-2,-1)C(-1,-2).
①画出△ABC关于x轴对称的图形;
②点B关于y轴对称的点的坐标为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在数学活动课中,小明剪了一张△ABC的纸片,其中∠A=60°,他将△ABC折叠压平使点A落在点B处,折痕DE,D在AB上,E在AC上.
(1)请作出折痕DE;(要求:尺规作图,不写作法,保留作图痕迹)
(2)判断△ABE的形状并说明;
(3)若AE=5,△BCE的周长为12,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,操场上有两根旗杆间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:
(1)请你求出另一旗杆BD的高度;
(2)小强从M点到达A点还需要多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.
(1)求对角线AC的长;
(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.
(1)求过点B′的反比例函数解析式;
(2)求线段CC′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.
(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;
(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3)
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在P点,使△PCD是以CD为腰的等腰三角形,如果存在,直接写出点P的坐标,如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,
①求直线BC 的解析式;
②当点E运动到什么位置时,四边形CDBF的面积最大?求四边形CDBF的最大面积及此时点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com