【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A. 140° B. 100° C. 50° D. 40°
【答案】B
【解析】如图,分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.根据轴对称的性质可得OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;因∠AOB=∠MOP+∠PON=40°,即可得∠COD=2∠AOB=80°,在△COD中,OC=OD,根据等腰三角形的性质和三角形的内角和定理可得∠OCD=∠ODC=50°;在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,利用SAS判定△CON≌△PON,根据全等三角形的性质可得∠OCN=∠NPO=50°,同理可得∠OPM=∠ODM=50°,所以∠MPN=∠NPO+∠OPM=50°+50°=100°.故选B.
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
利用完全平方公式,可以将多项式变形为的形式, 我们把这样的变形方法叫做多项式的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如: =
=
==
根据以上材料,解答下列问题:
(1)用多项式的配方法将化成的形式;
(2)下面是某位同学用配方法及平方差公式把多项式进行分解因式的解答过程:
老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:
(3)求证:x,y取任何实数时,多项式的值总为正数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,属于必然事件的是
A. 2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨
B. 某班级11名学生中,至少有两名同学的生日在同一个月份
C. 用长度分别为2cm,3cm,6cm的细木条首尾相连能组成一个三角形
D. 从分别写有π, , (两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减/辆 | -1 | +3 | -2 | +4 | +7 | -5 | -10 |
本周总的生产量是多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB =AC,AD⊥BC于点D,AM是△ABC的外角∠CAE的平分线.
(1)求证:AM∥BC;
(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)著点P在图(2)位置时,请写出∠1、∠2、∠3之间的关系,并说明理由;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:
①(x﹣1)(x+1)=x2﹣1;
②(x﹣1)(x2+x+1)=x3﹣1;
③(x﹣1)(x3+x2+x+1)=x4﹣1;
…
由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)= .
请你利用上面的结论,再完成下面两题的计算:
(1)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1.
(2)若x3+x2+x+1=0,求x2016的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com