【题目】某校组织了一次G20知识竞赛活动,根据获奖同学在竞赛中的成绩制成的统计图表如下,仔细阅读图表解答问题:
(1)求出表中a,b,c的数值,并补全频数分布直方图;
(2)获奖成绩的中位数落在哪个分数段?
(3)估算全体获奖同学成绩的平均分.
【答案】(1)a=40,b=0.4,c=0.3,补图见解析;(2)中位数落在85≤x<90这一段.(3)平均分: 89分.
【解析】试题分析:分数在95x<100之间的人数÷频率得到总人数,a=总人数×0.2,b=80÷总人数,c=60÷总人数,根据计算结果补全统计图即可;(2)根据中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数。如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,结合统计图可得答案.(3)根据求平均数公式计算即可.
试题解析:(1)20÷0.1=200,a=200×0.2=40;b=80÷200=0.4;c=60÷200=0.3.
统计图如图:
(2)把所用数据从小到大排列,位置处于中间的是第100名和101名,由统计图可以看出第100名和101名成绩落在8590分数段;
(3)(82.5×40+87.5×80+92.5×60+97.5×20)÷200=89
答:平均分为89分.
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AC、BD是它的两条对角线.
(1)如图1,已知AB=AC=AD,AB∥CD.
①若∠ABC=70°,则∠BAC= °,∠CAD= °;
②若AB=4,BC=2,求BD的长;
(2)如图2,已知∠ABD=∠ACD=60°,∠ADB=90°-∠BDC,求证:AB=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:
A种产品 | B种产品 | |
成本(万元/件) | 2 | 5 |
利润(万元/件) | 1 | 3 |
(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线(<0)与轴交于A,B两点,与y轴正半轴交于点C,且∠ACB=90°,点P是直线BC上方抛物线上的一个动点.
(1)请直接写出A,B,C三点的坐标及抛物线的解析式;
(2)连接PB,以BP,BC为一组邻边作平行四边形BCDP,当平行四边形BCDP的面积最大时,求P,D两点的坐标;
(3)若点Q是x 轴上一动点,是否存在以P,C,Q为顶点的三角形为等腰直角三角形?若存在,请直接写出P,Q两点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com