精英家教网 > 初中数学 > 题目详情

如图,已知抛物线的顶点为,与轴相交于两点(点在点的左边),点的横坐标是

(1)求点坐标及的值;

(2)如图1,抛物线与抛物线关于轴对称,将抛物线向左平移,平移后的抛物线记为的顶点为,当点关于点成中心对称时,求的解析式

(3)如图2,点轴负半轴上一动点,将抛物线绕点旋转后得到抛物线.抛物线的顶点为,与x轴相交于EF两点(点E在点F的左边),当以点PNE为顶点的三角形是直角三角形时,求顶点的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线C0的解析式为y=x2-(a+b)x+
c24
,其中a、b、c分别是△ABC中∠A、∠B、∠精英家教网C所对边的长.
(1)求证:抛物线C0与x轴必有两个交点;
(2)设P、Q是抛物线C0与x轴的两个交点,求证:P、Q两点总在x轴的正半轴上;
(3)设直线l:y=ax-bc与抛物线交于点E、F,与y轴交于点M,N为抛物线与y轴的交点,直线x=a是抛物线的对称轴,当△MNE的面积是△MNF的面积的5倍时,确定△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1的解析式为y=-x2+2x+8,图象与y轴交于D点,并且顶点A在双曲线上.
(1)求过顶点A的双曲线解析式;
(2)若开口向上的抛物线C2与C1的形状、大小完全相同,并且C2的顶点P始终在C1上,证明:抛物线C2一定经过A点;
(3)设(2)中的抛物线C2的对称轴PF与x轴交于F点,且与双曲线交于E点,当D、O、E精英家教网、F四点组成的四边形的面积为16.5时,先求出P点坐标,并在直线y=x上求一点M,使|MD-MP|的值最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线m的解析式为y=x2-4,与x轴交于A、C两点,B是抛物线m上的动点(B不与A、C重合),且B在x轴的下方,抛物线n与抛物线m关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求证:点D一定在抛物线n上.
(2)平行四边形ABCD能否为矩形?若能为矩形,求出这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);若不能为矩形,请说明理由.
(3)若(2)中过A、B、C、D的圆交y轴于E、F,而P是弧CF上一动点(不包括C、F两点),连接AP交y轴于N,连接EP交x轴于M.当P在运动时,四边形AEMN的面积是否改变?若不变,则求其面积;若变化,请说明理由.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1的顶点坐标是D(1,4),且经过点C(2,3),又与x轴交于点A、E(点A在点E左边),与y轴交于点B.
(1)抛物线C1的表达式是
y=-x2+2x+3
y=-x2+2x+3

(2)四边形ABDE的面积等于
9
9

(3)问:△AOB与△DBE相似吗?并说明你的理由;
(4)设抛物线C1的对称轴与x轴交于点F.另一条抛物线C2经过点E(C2与C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,并且以M、G、E为顶点的三角形与以点D、E、F为顶点的三角形全等,求a、b的值.(只需写出结果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线C1的解析式为y=-x2+2x+8,图象与y轴交于D点,并且顶点A在双曲线上.
(1)求过顶点A的双曲线解析式;
(2)若开口向上的抛物线C2与C1的形状、大小完全相同,并且C2的顶点P始终在C1上,证明:抛物线C2一定经过A点;
(3)设(2)中的抛物线C2的对称轴PF与x轴交于F点,且与双曲线交于E点,当D、O、E、F四点组成的四边形的面积为16.5时,先求出P点坐标,并在直线y=x上求一点M,使|MD-MP|的值最大.

查看答案和解析>>

同步练习册答案