精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△ABC中,∠C=90°,AC=6,BC=3,P为AC上一个动点,PCEF为矩形,其中点E、F分别在BC、AB上.若矩形PCEF的周长等于10,求AP的长.

分析 由矩形的性质可知:EF∥DC,所以△BFE∽△BCA,由相似三角形的性质求出CP的长,即可求出结论.

解答 解:∵四边形EFCD是矩形,
∴EF∥PC,EF=CP,CE=PF,
∵矩形PCEF的周长等于10,
设EF=CP=x,则CE=5-x,BE=x-2,
∵EF∥PC,
∴△BFE∽△BCA,
∴$\frac{EF}{AC}=\frac{BE}{BC}$,即$\frac{x}{6}=\frac{x-2}{3}$,
∴x=4,
∴EF=CP=4,
∴AP=2.

点评 本题考查了矩形的性质和相似三角形的判定以及性质,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.出租车司机小王驾车在东西方向的街道上行驶,如果把最初的出发点记作0,向东行驶记作正,向西行驶记作负,某天上午行驶的路程如下表(单位:km):
序号1234567
路程+5-3+10-8-6+12-10
(1)到中午,小王是否回到了最初的出发点?
(2)小王距离最初的出发点最远是多少千米?
(3)小王在上述过程中一共行驶了多少路程?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,AB=AC,点P是边BC上任意一点,求证:AB2-AP2=BP•CP.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,数轴上的A,B两点分别表示有理数a,b,则在下列各式中,不成立的是(  )
A.a<bB.-a>bC.|a|<|b|D.-a>-b

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,PA、PB为⊙O的切线,⊙O的半径为2,∠P=60°.阴影部分的周长是$\frac{4}{3}$π+4$\sqrt{3}$,面积是4$\sqrt{3}$-$\frac{4}{3}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,等边△ABC的边长为8,E为AC上一动点,ED⊥AB于D,DF⊥BC于F.
(1)若CE=2,求CF的长;
(2)当CE取何值时,DE=DF?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图所示,AD与BC相交于点O,且$\frac{OA}{OC}$=$\frac{OB}{OD}$,若OA=1.5,OC=2,AB=3,则CD的长为4.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年广东省东莞市堂星晨学校八年级3月月考数学试卷(解析版) 题型:解答题

已知:如图,在△ABC中,AB=AC,BE是AC边上的高.

(1)用直尺和圆规作出AB边上的高CD交AB于点D,交BE于点O(要求保留作图痕迹)

(2)判断△OBC是什么三角形,并说明理由.

查看答案和解析>>

同步练习册答案