精英家教网 > 初中数学 > 题目详情

如图所示,已知抛物线y=ax2+bx+c的图象,试确定下列各式的符号:
a________0,b________0,c________0;a+b+c________0,a-b+c________0.

<    >    >    >    <
分析:(1)由图象开口向下可以确定a的符号;
(2)由与y轴的交点在y轴的正半轴上可以确定c的符号;
(3)由对称轴为x=>0,又a<0可以确定以b的符号;
(4)把x=1代入解析式,得a+b+c>0,从而确定其符号;
(5)把x=-1代入解析式,得a-b+c<0,从而确定其符号.
解答:(1)图象开口向下,a<0;
(2)与y轴的交点在y轴的正半轴上,c>0,
(3)对称轴为x=>0,
又a<0;所以b>0;
(4)把x=1代入解析式,得a+b+c>0;
(5)把x=-1代入解析式,得a-b+c<0.
故填空答案:a<0,b>0,c>0;a+b+c>0,a-b+c<0.
点评:考查二次函数y=ax2+bx+c系数符号的确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知抛物线y=x2-4x+3与x轴交于A,B两点,C为抛物线的顶点,过点A作AP∥精英家教网BC交抛物线于点P.
(1)求A,B,C三点坐标;
(2)求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在点M,过点M作ME⊥x轴于点E,使A,M,E三点为顶点的三角形与△PCA相似?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知抛物线y=ax2+bx+c(a≠0)经过原点和点(-2,0),则2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),抛物线的对称轴x=2交x轴于点E.
(1)求交点A的坐标及抛物线的函数关系式;
(2)在平面直角坐标系xOy中是否存在点P,使点P与A,B,C三点构成一个平行四边形?若存在,请直接写出点P坐标;若不存在,请说明理由;
(3)连接CB交抛物线对称轴于点D,在抛物线上是否存在一点Q,使得直线CQ把四边形DEOC分成面积比为1:7的两部分?若存在,请求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.

查看答案和解析>>

同步练习册答案