精英家教网 > 初中数学 > 题目详情
29、已知多项式3x2+my-8与多项式-nx2+2y+7的差中,不含有x、y,求nm+mn的值.
分析:先求出两个多项式的差,再根据题意,不含有x、y,即含x、y项的系数为0,求得m,n的值,再代入nm+mn求值即可.
解答:解:(3x2+my-8)-(-nx2+2y+7)
=3x2+my-8+nx2-2y-7
=(3+n)x2+(m-2)y-15,
因为不含有x、y,所以3+n=0,m-2=0,
解得n=-3,m=2,
把n=-3,m=2代入nm+mn=(-3)2+2×(-3)=9-6=3.
答:nm+mn的值是3.
点评:当一个多项式中不含有哪一项时,应让那一项的系数为0.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知多项式3x2+my-8与多项式-nx2+2y+7的差中,不含有x2、y,求n-m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知多项式3x2-4x+6的值为9,则多项式x2-
43
x+6
的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知多项式3x2-4x+6的值为9,则多项式x2-
4
3
x
+6的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知多项式3x2-4x+6的值为9,则多项式6-3x2+4x的值为
3
3

查看答案和解析>>

同步练习册答案