精英家教网 > 初中数学 > 题目详情

已知,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,BD平分∠ABC,交AC于点D.动点P从D点出发沿DC向终点C运动,速度为每秒1个单位,动点Q从B点出发沿BA向终点A运动,速度为每秒4个单位.两点同时出发,当一点到达终点时,两点停止运动.设P、Q运动时间为t秒.
(1)求线段CD的长;
(2)求△BPQ的面积S与t之间的函数关系式;当S=7.2时,求t的值;
(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,直接写出使所组成的四边形为菱形的t的值.

解:(1)过点D作DE⊥AB于E,
∵BD平分∠ABC,∠ACB=90°,
∴DE=DC,
∴△BDE≌△BDC,
∴BE=BC,在Rt△ABC中,由勾股定理,得
AB==10,
设CD=x,则AD=8-x,DE=x,
∴16+x2=(8-x)2
∴x=3,
∴CD=3.


(2)作QF⊥AC于F,
∴∠AFQ=90°,
∵∠ACB=90°,
∴QF∥BC,
∴△AQF∽△ABC,

=
∴QF=
∴S△BPQ=×6×8--(5+t)•
∴S=t2+6t,
当S=7.2时,
7.2=t2+6t,
解得,t1=-6(舍去),t2=1;


(3)当AQ=AP时,BQ=4t,CP=3-t,在Rt△BPC中,由勾股定理,得
16t2=(3-t)2+36,
解得x1=(舍去),x2=
当AP=PQ时,t1=1,t2=
当PQ=AQ时,不存在.
∴t的值为:,1,

分析:(1)过点D作DE⊥AB于E,由角平分线的性质定理就可以得出DE=DC,BE=BC=6,由勾股定理可以求出AB,设出CD=x,则可以表示出AD、BE,由勾股定理就可以求出x.
(2)作QF⊥AC于F,可以这么三角形相似把QF用含t的式子表示出来,而S△BPQ=S△ABC-S△AQP-S△PCB,就可以表示出积S与t之间的函数关系式.
(3)当BQ=BP时利用勾股定理建立等量关系就可以求出其t值,当BP=QP时,作PM⊥AB,根据等腰三角形的性质就可以求出其t值;当PQ=BQ时,作QN⊥AC,利用三角形相似就可以求出其t值.
点评:本题考查了轴对称,三角形的面积,两点间的距离,菱形的判定及性质,勾股定理的运用,相似三角形的判定及性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是边AB的中点,E、G分别是边AC、BC上的一点,∠EMG=45°,AC与MG的延长线相交于点F.
(1)在不添加字母和线段的情况下写出图中一定相似的三角形,并证明其中的一对;
(2)连接结EG,当AE=3时,求EG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠C=90°,∠A=30°,b=2
3
,解这个直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D为AC上一点(不与A、C不精英家教网重合),过D作DQ⊥AC(DQ与AB在AC的同侧);点P从D点出发,在射线DQ上运动,连接PA、PC.
(1)当PA=PC时,求出AD的长;
(2)当△PAC构成等腰直角三角形时,求出AD、DP的长;
(3)当△PAC构成等边三角形时,求出AD、DP的长;
(4)在运动变化过程中,△CAP与△ABC能否相似?若△CAP与△ABC相似,求出此时AD与DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E.求证:∠AME=∠CMB.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)观察图形,猜想BD与⊙O的位置关系:
相切
相切

(2)证明第(1)题的猜想.

查看答案和解析>>

同步练习册答案