精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有( )个.
A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:∵抛物线的对称轴为直线x=﹣1,点B的坐标为(1,0), ∴A(﹣3,0),
∴AB=1﹣(﹣3)=4,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以②正确;
∵抛物线开口向下,
∴a>0,
∵抛物线的对称轴为直线x=﹣ =﹣1,
∴b=2a>0,
∴ab>0,所以③错误;
∵x=﹣1时,y<0,
∴a﹣b+c<0,
而a>0,
∴a(a﹣b+c)<0,所以④正确.
故选C.
利用抛物线的对称性可确定A点坐标为(﹣3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=﹣1时,y<0,即a﹣b+c<0和a>0可对④进行判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.
(1)求∠D的度数;
(2)若CD=2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)|﹣2|﹣(1+ 0+
(2)(a﹣ )÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.
(1)证明:FD=AB;
(2)当ABCD的面积为8时,求△FED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为2a、宽为2b的长方形其中a,b均为正数,且a>b,沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形

1你认为图2中大正方形的边长为 a+b 小正方形阴影部分的边长为 .(用含a、b的代数式表示

2仔细观察图2,请你写出下列三个代数式:a+b2a-b2,ab所表示的图形面积之间的相等关系,并选取适合a、b的数值加以验证

3已知a+b=7,ab=6求代数式a-b的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b(a≠0)的图形与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).
(1)求该反比例函数和一次函数的解析式.
(2)求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正确结论的选项是(  )

A.①③
B.①③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)14+24﹣8

(2)(﹣3)﹣(﹣2)+(﹣4)

(3)﹣23÷×(﹣2

(4)(+)×(﹣36)

(5)﹣14×[2﹣(﹣3)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

同步练习册答案