精英家教网 > 初中数学 > 题目详情

【题目】计算:

(1)14+24﹣8

(2)(﹣3)﹣(﹣2)+(﹣4)

(3)﹣23÷×(﹣2

(4)(+)×(﹣36)

(5)﹣14×[2﹣(﹣3)2]

【答案】(1)30;(2)﹣5;(3)﹣8;(4)﹣27;(5)

【解析】

(1)根据有理数的加减法运算法则进行计算即可;(2)根据负数的加减运算法则进行计算即可;(3)根据有理数的运算法则先算乘方再算乘除法;(4)根据分式的运算法则,先算括号里的,再算乘法;(4)先算乘方,再算括号内的,再算乘法,最后算减法.

解:(1)14+24﹣8

=14+24+(﹣8)

=30;

(2)(﹣3)﹣(﹣2)+(﹣4)

=(﹣3)+2+(﹣4)

=﹣5;

(3)﹣23÷×(﹣2

=﹣8×

=﹣8;

(4)(+)×(﹣36)

=(﹣18)+(﹣30)+21

=﹣27;

(5)﹣14×[2﹣(﹣3)2]

=﹣1﹣×[2﹣9]

=﹣1﹣×(﹣7)

=﹣1+

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】矩形OABC有两边在坐标轴的正半轴上,如图所示,双曲线y= 与边AB、BC分别交于D、E两点,OE交双曲线y= 于点G,若DG∥OA,OA=3,则CE的长为(
A.
B.1.5
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有( )个.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.

(1)求这个二次函数的表达式;
(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中, 为常数,试确定k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,满足y的值随x的值增大而增大的是(  )
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=的图象的一支位于第一象限.

(1)判断该函数图象的另一支所在的象限,并求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:
﹣1)÷ ,其中x的值从不等式组 的整数解中选取.

查看答案和解析>>

同步练习册答案