精英家教网 > 初中数学 > 题目详情

【题目】正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.

【答案】
(1)

解:以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.

①∵正方形OABC的边长为4,对角线相交于点P,

∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).

②设抛物线L的解析式为y=ax2+bx+c,

∵抛物线L经过O、P、A三点,

∴有

解得:

∴抛物线L的解析式为y=﹣ +2x


(2)

解:∵点E是正方形内的抛物线上的动点,

∴设点E的坐标为(m,﹣ +2m)(0<m<4),

∴SOAE+SOCE= OAyE+ OCxE=﹣m2+4m+2m=﹣(m﹣3)2+9,

∴当m=3时,△OAE与△OCE面积之和最大,最大值为9


【解析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出SOAE+SOCE关于m的函数解析式,根据二次函数的性质即可得出结论.本题考查了待定系数法求函数解析式、正方形的性质、三角形的面积公式以及二次函数的性质,解题的关键是:(1)建立直角坐标系.①根据正方形的性质找出点的坐标;②利用待定系数法求函数解析式;(2)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,建立直角坐标系,找出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.
【考点精析】关于本题考查的二次函数的性质和三角形的面积,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;三角形的面积=1/2×底×高才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:
(1)|﹣2|﹣(1+ 0+
(2)(a﹣ )÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正确结论的选项是(  )

A.①③
B.①③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)14+24﹣8

(2)(﹣3)﹣(﹣2)+(﹣4)

(3)﹣23÷×(﹣2

(4)(+)×(﹣36)

(5)﹣14×[2﹣(﹣3)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 对于以下结论:
①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣
其中结论错误的是 (只填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的(  )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.

(1)b=(用含m的代数式表示);
(2)若SOAF+S四边形EFBC=4,则m的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知f(x)=|x﹣a|,a∈R.
(1)当a=1时,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函数g(x)=f(x)﹣|x﹣3|的值域为A,且[﹣1,2]A,求a的取值范围.

查看答案和解析>>

同步练习册答案