精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.

(1)b=(用含m的代数式表示);
(2)若SOAF+S四边形EFBC=4,则m的值是

【答案】
(1)
(2)
【解析】解:(1)∵点A在反比例函数y= (x>0)的图象上,且点A的横坐标为m, ∴点A的纵坐标为 ,即点A的坐标为(m, ).
令一次函数y=﹣x+b中x=m,则y=﹣m+b,
∴﹣m+b= 即b=m+ .所以答案是:m+ .(2)作AM⊥OD于M,BN⊥OC于N.∵反比例函数y= ,一次函数y=﹣x+b都是关于直线y=x对称,
∴AD=BC,OD=OC,DM=AM=BN=CN,记△AOF面积为S,
则△OEF面积为2﹣S,四边形EFBN面积为4﹣S,△OBC和△OAD面积都是6﹣2S,△ADM面积为4﹣2S=2(2﹣s),
∴SADM=2SOEF
∴EF= AM= NB,∴点B坐标(2m, )代入直线y=﹣x+m+ ,∴ =﹣2m=m+ ,整理得到m2=2,
∵m>0,
∴m= .所以答案是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;
②当x= 时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是3;
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的选项是( )

A.①③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.

(1)求这个二次函数的表达式;
(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中, 为常数,试确定k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.

(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣ (x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=的图象的一支位于第一象限.

(1)判断该函数图象的另一支所在的象限,并求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,底面是正三角形,三棱柱的高为 ,若P是△A1B1C1中心,且三棱柱的体积为 ,则PA与平面ABC所成的角大小是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案