精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 对于以下结论:
①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣
其中结论错误的是 (只填写序号).

【答案】②
【解析】解:由题意二次函数图象如图所示,

∴a<0.b<0,c>0,
∴abc>0,故①正确.
∵a+b+c=0,
∴c=﹣a﹣b,
∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,
又∵x=﹣1时,y>0,
∴a﹣b+c>0,
∴b﹣a<c,
∵c>O,
∴b﹣a可以是正数,
∴a+3b+2c≤0,故②错误.
所以答案是②.
∵函数y′= x2+x= (x2+ x)= (x+ 2 ,∵ >0,∴函数y′有最小值﹣ ,∴ x2+x≥﹣ ,故③正确.
∵y=ax2+bx+c的图象经过点(1,0),
∴a+b+c=0,
∴c=﹣a﹣b,
令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1 , 1,
∵x11= =﹣ ,∴x1=﹣
∵﹣2<x1<x2
∴在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣ ,故④正确,
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算下列各题:
(1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.

(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是(  )
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=﹣ x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.

(1)判断△ABC的形状,并说明理由;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;
(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1 , C1 , 且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是(  )
A.y=﹣(x﹣ 2
B.y=﹣(x+ 2
C.y=﹣(x﹣ 2
D.y=﹣(x+ 2+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于(  )

A.60
B.80
C.30
D.40

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为( )
A.x=1,y=3
B.x=3,y=2
C.x=4,y=1
D.x=2,y=3

查看答案和解析>>

同步练习册答案