精英家教网 > 初中数学 > 题目详情

【题目】计算下列各题:
(1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)

【答案】
(1)解:﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0

=﹣1+2 × ﹣4+1

=﹣1+3﹣4+1

=﹣1;


(2)解:(x﹣y)2﹣(x﹣2y)(x+y)

=x2﹣2xy+y2﹣x2+xy+2y2

=﹣xy+3y2


【解析】(1)先算绝对值,二次根式,特殊角的三角函数值,负整数指数幂,零指数幂,再相加即可求解;(2)先根据完全平方公式,多项式乘多项式的计算法则计算,再合并同类项即可求解.
【考点精析】通过灵活运用零指数幂法则和整数指数幂的运算性质,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于(
A.20°
B.30°
C.40°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为
(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值;
(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的两根,Rt△ABC的面积为平方厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题引入】 已知:如图BE、CF是△ABC的中线,BE、CF相交于G.求证: = =

证明:连结EF
∵E、F分别是AC、AB的中点
∴EF∥BC且EF= BC
= = =
【思考解答】
(1)连结AG并延长AG交BC于H,点H是否为BC中点(填“是”或“不是”)
(2)①如果M、N分别是GB、GC的中点,则四边形EFMN 是四边形. ②当 的值为时,四边形EFMN 是矩形.
③当 的值为时,四边形EFMN 是菱形.
④如果AB=AC,且AB=10,BC=16,则四边形EFMN的面积S=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.
(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB= ,E是 的中点,求EGED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程与不等式组
(1)解方程:
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P的坐标为(x1 , y1),点Q的坐标为(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.
(1)已知点A的坐标为(1,0), ①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为 ,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 对于以下结论:
①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣
其中结论错误的是 (只填写序号).

查看答案和解析>>

同步练习册答案