精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-
4
3
3
),交x轴于A、B两点,交y轴于点C(0,-
3
).
(1)求抛物线的表达式.
(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.判断四边形ADBC的形状,并说明理由.
(3)试问在线段AC上是否存在一点F,使得△FBD的周长最小?若存在,请写出点F的坐标;若不存在,请说明理由.
(1)由题意知
-
b
2a
=1
4ac-b2
4a
=-
4
3
3
c=-
3

解得:a=
3
3
,b=-
2
3
3

∴抛物线的解析式为y=
3
3
x2-
2
3
3
x-
3


(2)设点A(x1,0),B(x2,0),则y=
3
3
x2-
2
3
3
x-
3
=0,
解得:x1=-1,x2=3,
∴|OA|=1,|OB|=3.又∵tan∠OCB=
OB
OC
=
3

∴∠OCB=60°,同理可求∠OCA=30°.
∴∠ACB=90°,
由旋转性质可知AC=BD,BC=AD,
∴四边形ADBC是平行四边形
又∵∠ACB=90°.
∴四边形ADBC是矩形;

(3)答:存在,
延长BC至N,使CN=CB.
假设存在一点F,使△FBD的周长最小.
即FD+FB+DB最小.
∵DB固定长.∴只要FD+FB最小.
又∵CA⊥BN
∴FD+FB=FD+FN.∴当N、F、D在一条直线上时,FD+FB最小.
又∵C为BN的中点,
∴FC=
1
2
AC(即F为AC的中点).
又∵A(-1,0),C(0,-
3

∴点F的坐标为F(-
1
2
,-
3
2

答:存在这样的点F(-
1
2
,-
3
2
),使得△FBD的周长最小.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;
(2)若与x轴的两个交点为A、B,与y轴交于点C.在该抛物线上找一点D,使得△ABC与△ABD全等,求出D点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=
1
2
x+1与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求a、b及sin∠ACP的值;
(2)设点P的横坐标为m;
①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴交于点A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)求出该抛物线的对称轴及顶点D的坐标;
(3)若点P在抛物线上运动(点P异于点D),当△PAB的面积和△DAB面积相等时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=
3
2
,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点P在第一象限内时,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与以B、C、E为顶点的三角形相似,直接写出点P的坐标;
(3)若点M(-4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,?ABCO的顶点O在原点,点A的坐标为(-2,0),点B的坐标为(0,2),点C在第一象限.
(1)直接写出点C的坐标;
(2)将?ABCO绕点O逆时针旋转,使OC落在y轴的正半轴上,如图②,得□DEFG(点D与点O重合).FG与边AB、x轴分别交于点Q、点P.设此时旋转前后两个平行四边形重叠部分的面积为S0,求S0的值;
(3)若将(2)中得到的?DEFG沿x轴正方向平移,在移动的过程中,设动点D的坐标为(t,0),?DEFG与?ABCO重叠部分的面积为S.写出S与t(0<t≤2)的函数关系式.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2+4x+c的图象经过坐标原点,并且与函数y=
1
2
x的图象交于O、A两点.
(1)求c的值;
(2)求A点的坐标;
(3)若一条平行于y轴的直线与线段OA交于点F,与这个二次函数的图象交于点E,求线段EF的最大长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?

查看答案和解析>>

同步练习册答案