Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=
1
2
x+1ÓëÅ×ÎïÏßy=ax2+bx-3½»ÓÚA¡¢BÁ½µã£¬µãAÔÚxÖáÉÏ£¬µãBµÄ×Ý×ø±êΪ3£®µãPÊÇÖ±ÏßABÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¨²»ÓëA¡¢BµãÖغϣ©£¬¹ýµãP×÷xÖáµÄ´¹Ïß½»Ö±ÏßABÓÚµãC£¬×÷PD¡ÍABÓÚµãD£®
£¨1£©Çóa¡¢b¼°sin¡ÏACPµÄÖµ£»
£¨2£©ÉèµãPµÄºá×ø±êΪm£»
¢ÙÓú¬ÓÐmµÄ´úÊýʽ±íʾÏ߶ÎPDµÄ³¤£¬²¢Çó³öÏ߶ÎPD³¤µÄ×î´óÖµ£»
¢ÚÁ¬½ÓPB£¬Ï߶ÎPC°Ñ¡÷PDB·Ö³ÉÁ½¸öÈý½ÇÐΣ¬ÊÇ·ñ´æÔÚÊʺϵÄmµÄÖµ£¬Ê¹ÕâÁ½¸öÈý½ÇÐεÄÃæ»ýÖ®±ÈΪ9£º10£¿Èô´æÔÚ£¬Ö±½Óд³ömµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©ÓÉ
1
2
x+1=0£¬µÃx=-2£¬¡àA£¨-2£¬0£©£®
ÓÉ
1
2
x+1=3£¬µÃx=4£¬¡àB£¨4£¬3£©£®
¡ßy=ax2+bx-3¾­¹ýA¡¢BÁ½µã£¬
¡à
(-2)2•a-2b-3=0
42•a+4b-3=3

¡à
a=
1
2
b=-
1
2
£¬
ÔòÅ×ÎïÏߵĽâÎöʽΪ£ºy=
1
2
x2-
1
2
x-3£¬
ÉèÖ±ÏßABÓëyÖá½»ÓÚµãE£¬ÔòE£¨0£¬1£©£®
¡ßPC¡ÎyÖᣬ
¡à¡ÏACP=¡ÏAEO£®
¡àsin¡ÏACP=sin¡ÏAEO=
OA
AE
=
2
5
=
2
5
5
£®

£¨2£©¢ÙÓÉ£¨1£©Öª£¬Å×ÎïÏߵĽâÎöʽΪy=
1
2
x2-
1
2
x-3£®ÔòµãP£¨m£¬
1
2
m2-
1
2
m-3£©£®
ÒÑÖªÖ±ÏßAB£ºy=
1
2
x+1£¬ÔòµãC£¨m£¬
1
2
m+1£©£®
¡àPC=
1
2
m+1-£¨
1
2
m2-
1
2
m-3£©=-
1
2
m2+m+4=-
1
2
£¨m-1£©2+
9
2

Rt¡÷PCDÖУ¬PD=PC•sin¡ÏACP=[-
1
2
£¨m-1£©2+
9
2
]•
2
5
5
=-
5
5
£¨m-1£©2+
9
5
5

¡àPD³¤µÄ×î´óֵΪ£º
9
5
5
£®

¢ÚÈçͼ£¬·Ö±ð¹ýµãD¡¢B×÷DF¡ÍPC£¬BG¡ÍPC£¬´¹×ã·Ö±ðΪF¡¢G£®
¡ßsin¡ÏACP=
2
5
5
£¬
¡àcos¡ÏACP=
1
5
£¬
ÓÖ¡ß¡ÏFDP=¡ÏACP
¡àcos¡ÏFDP=
DF
DP
=
1
5
£¬
ÔÚRt¡÷PDFÖУ¬DF=
1
5
PD=-
1
5
£¨m2-2m-8£©£®
ÓÖ¡ßBG=4-m£¬
¡à
S¡÷PCD
S¡÷PBC
=
DF
BG
=
-
1
5
(m2-2m-8)
4-m
=
1
5
(m-4)(m+2)
m-4
=
m+2
5
£®
µ±
S¡÷PCD
S¡÷PBC
=
m+2
5
=
9
10
ʱ£¬½âµÃm=
5
2
£»
µ±
S¡÷PCD
S¡÷PBC
=
m+2
5
=
10
9
ʱ£¬½âµÃm=
32
9
£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ϱí¸ø³öÁËÒ»¸ö¶þ´Îº¯ÊýµÄһЩȡֵÇé¿ö£º
x¡­0¡­2¡­4¡­
y¡­3¡­-1¡­3¡­
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£¬²¢Çó³öÆäͼÏóÓëxÖáµÄ½»µã×ø±ê£»
£¨2£©ÇëÔÚÈçͼËùʾµÄ×ø±êϵÖл­³öÕâ¸ö¶þ´Îº¯ÊýµÄͼÏó£»
£¨3£©¸ù¾ÝÆäͼÏóд³öxÈ¡ºÎֵʱ£¬y£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Å×ÎïÏßy=ax2+bx+cµÄ¶¥µãPµÄ×ø±êΪ£¨1£¬-
4
3
3
£©£¬½»xÖáÓÚA¡¢BÁ½µã£¬½»yÖáÓÚµãC£¨0£¬-
3
£©£®
£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ£®
£¨2£©°Ñ¡÷ABCÈÆABµÄÖеãEÐýת180¡ã£¬µÃµ½ËıßÐÎADBC£®ÅжÏËıßÐÎADBCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©ÊÔÎÊÔÚÏ߶ÎACÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃ¡÷FBDµÄÖܳ¤×îС£¿Èô´æÔÚ£¬Çëд³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=-2x+42½»xÖáÓëµãA£¬½»Ö±Ïßy=xÓÚµãB£¬Å×ÎïÏßy=ax2-2x+c·Ö±ð½»Ï߶ÎAB¡¢OBÓÚµãC¡¢D£¬µãCºÍµãDµÄºá×ø±ê·Ö±ðΪ16ºÍ4£¬µãPÔÚÕâÌõÅ×ÎïÏßÉÏ£®
£¨1£©ÇóµãC¡¢DµÄ×Ý×ø±ê£®
£¨2£©Çóa¡¢cµÄÖµ£®
£¨3£©ÈôQΪÏ߶ÎOBÉÏÒ»µã£¬ÇÒP¡¢QÁ½µãµÄ×Ý×ø±ê¶¼Îª5£¬ÇóÏ߶ÎPQµÄ³¤£®
£¨4£©ÈôQΪÏ߶ÎOB»òÏ߶ÎABÉϵÄÒ»µã£¬PQ¡ÍxÖᣬÉèP¡¢QÁ½µãÖ®¼äµÄ¾àÀëΪd£¨d£¾0£©£¬µãQµÄºá×ø±êΪm£¬Ö±½Óд³ödËæmµÄÔö´ó¶ø¼õСʱmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2-2ax-b£¨a£¾0£©ÓëxÖáµÄÒ»¸ö½»µãΪB£¨-1£¬0£©£¬ÓëyÖáµÄ¸º°ëÖá½»ÓÚµãC£¬¶¥µãΪD£®
£¨1£©Ö±½Óд³öÅ×ÎïÏߵĶԳÆÖᣬ¼°Å×ÎïÏßÓëxÖáµÄÁíÒ»¸ö½»µãAµÄ×ø±ê£»
£¨2£©ÒÔADΪֱ¾¶µÄÔ²¾­¹ýµãC£®
¢ÙÇóÅ×ÎïÏߵĽâÎöʽ£»
¢ÚµãEÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ£¬µãFÔÚÅ×ÎïÏßÉÏ£¬ÇÒÒÔB£¬A£¬F£¬EËĵãΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÇóµãFµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ºá×ø±êÓë×Ý×ø±ê¶¼ÊÇÕûÊýµÄµã£¨x£¬y£©³ÆΪÕûµã£¬Èç¹û½«¶þ´Îº¯Êýy=x2+8x-
39
4
µÄͼÏóÓëxÖáËùΧ³ÉµÄ·â±ÕͼÐÎȾ³ÉºìÉ«£¬Ôò´ËºìÉ«ÇøÓòÄÚ²¿¼°Æä±ß½çÉϵÄÕûµã¸öÊýÓÐ______¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÈçͼËùʾ£¬Ä³Í¬Ñ§ÔÚ̽¾¿¶þ´Îº¯ÊýͼÏóʱ£¬×÷Ö±Ïßy=mƽÐÐÓÚxÖᣬ½»¶þ´Îº¯Êýy=x2µÄͼÏóÓÚA¡¢BÁ½µã£¬×÷AC¡¢BD·Ö±ð´¹Ö±ÓÚxÖᣬ·¢ÏÖËıßÐÎABCDÊÇÕý·½ÐΣ®
£¨1£©ÇómµÄÖµ¼°A¡¢BÁ½µãµÄ×ø±ê£»
£¨2£©ÈçͼËùʾ£¬½«Å×ÎïÏß¡°y=x2¡±¸ÄΪ¡°y=x2-2x+2¡±£¬Ö±ÏßCD¾­¹ýÅ×ÎïÏߵĶ¥µãPÓëxÖáƽÐУ¬ÆäËü¹Øϵ²»±ä£¬ÇómµÄÖµ¼°A¡¢BÁ½µãµÄ×ø±ê£®
£¨3£©ÈçͼËùʾ£¬½«Í¼ÖеĸÄΪ¡°y=ax2+bx+c£¨a£¾0£©£¬ÆäËü¹Øϵ²»±ä£¬ÇëÖ±½Óд³ömµÄÖµ¼°A¡¢BÁ½µãµÄ×ø±ê£¨Óú¬ÓÐa¡¢b¡¢cµÄ´úÊýʽ±íʾ£©
[Ìáʾ£ºÅ×ÎïÏßy=ax2+bx+cµÄ¶¥µã×ø±êΪ£¨-
b
2a
£¬
4ac-b2
4a
£©£¬¶Ô³ÆÖáΪx=-
b
2a
]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßy=-x2+2mx-m2-m+3
£¨1£©Ö¤Ã÷Å×ÎïÏ߶¥µãÒ»¶¨ÔÚÖ±Ïßy=-x+3ÉÏ£»
£¨2£©ÈôÅ×ÎïÏßÓëxÖá½»ÓÚM¡¢NÁ½µã£¬µ±OM•ON=3£¬ÇÒOM¡ÙONʱ£¬ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©Èô£¨2£©ÖÐËùÇóÅ×ÎïÏ߶¥µãΪC£¬ÓëyÖá½»µãÔÚÔ­µãÉÏ·½£¬Å×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãB£¬Ö±Ïßy=-x+3ÓëxÖá½»ÓÚµãA£®µãPΪÅ×ÎïÏ߶ԳÆÖáÉÏÒ»¶¯µã£¬¹ýµãP×÷PD¡ÍAC£¬´¹×ãDÔÚÏ߶ÎACÉÏ£®ÊÔÎÊ£ºÊÇ·ñ´æÔÚµãP£¬Ê¹S¡÷PAD=
1
4
S¡÷ABC£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Ó¢»ªÑ§Ð£×¼±¸Î§³ÉÒ»¸öÖмä¸ôÓÐÒ»µÀÀé°ÊµÄ³¤·½Ðλ¨ÆÔ£¬ÏÖÓг¤Îª24mµÄÀé°Ê£¬Ò»Ã濿ǽ£¨Ç½³¤Îª10m£©£¬É軨ÆÔ¿íABΪx£¨m£©£¬Ãæ»ýΪS£¨m2£©£®
£¨1£©ÇóSÓëxµÄº¯Êý¹Øϵʽ£»
£¨2£©Èç¹ûҪΧ³ÉÃæ»ýΪ45m2µÄ»¨ÆÔ£¬ABµÄ³¤ÊǶàÉÙ£»
£¨3£©ÄÜΧ³ö±È45m2¸ü´óµÄ»¨ÆÔÂð£¿ÈôÄÜ£¬Çó³ö×î´óµÄÃæ»ý£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸