精英家教网 > 初中数学 > 题目详情

如图,在三角形AOB中,A、B两点的坐标分别为(2,4)和(6,2),求三角形AOB的面积.

解:如图,过A作水平线l交y轴于点E,过B作垂线,交直线l与点C,交x轴于点D,则
S矩形ECDO=6×4=24,
SRt△AEO=×4×2=4;
SRt△ABC==4;
SRt△OBD=×6×2=6;
∴S△OAB=S矩形ECDO-SRt△ABC-SRt△AEO-SRt△OBD=10.
∴三角形AOB的面积是10.
分析:过A作水平线l交y轴于点E,过B作垂线,交直线l与点C,交x轴于点D,四边形面积ECDO为24.△OAB的面积为24减去三个直角三角形的面积,△ABO面积为24-4-6-4=10.
点评:解答本题充分利用图形的面积公式以及坐标与图形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q精英家教网分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0≤t≤4)
(1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示);
(2)求△OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?
(3)当t为何值时,△OPQ为直角三角形?
(4)证明无论t为何值时,△OPQ都不可能为正三角形.若点P运动速度不变改变Q的运动速度,使△OPQ为正三角形,求Q点运动的速度和此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在三角形AOB中,A、B两点的坐标分别为(2,4)和(6,2),求三角形AOB的面积.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在Rt△AOB中,∠AOB=90°,AB=5,cosA=
35
.一动点P从点O出发,以每秒1个单位长度的速度沿OB方向匀速运动;另一动点Q从点B出发,以每秒1个单位长度的速度沿BO方向匀速运动.两动点同时出发,当第一次相遇时即停止运动.在点P、Q运动的过程中,以PQ为一边作正方形PQMN,使正方形PQMN和△AOB在线段OB的同侧.设运动时间为t(单位:秒).

(1)求OA和OB的长度;
(2)在点P、Q运动的过程中,设正方形PQMN和△AOB重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(3)如图②,现以△AOB的直角边OB为x轴,顶点O为原点建立平面直角坐标系xOy.取OB的中点C,将过点A、C、B的抛物线记为抛物线T.
①求抛物线T的函数解析式;
②设抛物线T的顶点为点D.在点P、Q运动的过程中,设正方形PQMN的对角线PM、QN交于点E,连接DE、DN.是否存在这样的t,使得△DEN是以EN、DE为两腰或以EN、DN为两腰的等腰三角形?若存在,请求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形AOB的周长为100,在其内部有n个小直角三角形,则这n个小直角三角形的周长之和为
100
100

查看答案和解析>>

同步练习册答案