精英家教网 > 初中数学 > 题目详情
如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.
下面的证法供你参考:
把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
实践探索:
(1)请你仿照上面的思路,探索解决下面的问题:
如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>AD.
(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.
创新应用:
(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.

【答案】分析:(1)把△ACD绕点A顺时针旋转90°得到△ABE,连接ED,则易证△ACD≌△ABE,根据勾股定理可以的到DE=AD,在△DBE中利用两边之和大于第三边即可得到;
(2)把△ACD绕点A顺时针旋转90°得到△ABE,连接ED,则易证△ACD≌△ABE,△AED是等腰直角三角形,则DE=AD,在△BED中,利用三角形三边关系定理即可证得;
(3)把△ACD绕点A顺时针旋转α,得到△ABE,则有△ACD≌△ABE,则易证E、B、D三点共线,在等腰△ADE中,利用两边之和大于第三边即可得到.
解答:解:(1)证明:把△ACD绕点A顺时针旋转90°得到△ABE,连接ED
则有△ACD≌△ABE,
DC=EB
∵AD=AE,∠DAE=90°
∴△ADE是等腰直角三角形
∴DE=AD
在△DBE中,BD+EB>DE,
即:BD+DC>AD;

(2)把△ABD旋转,使AB与AC重合,然后绕AC旋转,得到△ACD′,
则BD=CD′,
在△CDD′中,CD+CD′>DD′,
即BD+CD>DD′,
∵△ADD′是钝角三角形,则DD′>AD
当D运动到B的位置时,DD′=BC=AD.
∴BD+DC≥AD;

(3)猜想1:BD+DC<2AD
证明:把△ACD绕点A顺时针旋转α,得到△ABE则有△ACD≌△ABE,DC=EB,∠ACD=∠ABE
∵∠BAC+∠BDC=180°
∴∠ABD+∠ACD=180°
∴∠ABD+∠ABE=180°
即:E、B、D三点共线.
∵AD=AE,
∴在△ADE中,AE+AD>ED,即BD+DC<2AD.
点评:本题考查了旋转的性质以及勾股定理,通过旋转构造全等的三角形,把所研究的三条线段转移到同一个三角形中,是解题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•延庆县一模)如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.
下面的证法供你参考:
把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
实践探索:
(1)请你仿照上面的思路,探索解决下面的问题:
如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>
2
AD.
(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.
创新应用:
(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

作图与回答:
(1)如图1,已知线段a和b,请用直尺和圆规作出线段AB,使AB=2a-b.(不必写作法,只需保留作图痕迹)
(2)已知直线AB与CD垂直,垂足为O,请在图中用量角器画射线OE表示北偏西30°、画射线OF表示南偏东30°、画射线OH表示北偏东45°.
(3)找一找,你完成的作如图2中是锐角的对顶角有几组,把它们写出来.

查看答案和解析>>

科目:初中数学 来源:2014届江苏吴江七年级下期期末调研数学试卷(解析版) 题型:选择题

如图,下列推理及所注明的理由都正确的是  

   A.∵∠A=∠D(已知)∴AB∥DE(同位角相等,两直线平行)

   B.∵∠B=∠DEF(已知) ∴AB∥DE(两直线平行,同位角相等)

C.∵∠A+∠AOE=180°(已知)∴AC∥DF(同旁内角互补,两直线平行)

D.∵AC∥DF(已知) ∴∠F+∠ACF=180°(两直线平行,同旁内角互补)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)在你学过的特殊四边形中,写出两种勾股四边形的名称:__________和_________;

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4).请画出以格点

为顶点,为勾股边,且对角线相等的勾股四边形

 


(3)如图2,将绕顶点按顺时针方向旋转,得到,连接

已知

求证:,即四边形是勾股四边形.

查看答案和解析>>

科目:初中数学 来源:2012年北京市延庆县中考数学一模试卷(解析版) 题型:解答题

如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.
下面的证法供你参考:
把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
实践探索:
(1)请你仿照上面的思路,探索解决下面的问题:
如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>AD.
(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.
创新应用:
(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.

查看答案和解析>>

同步练习册答案