精英家教网 > 初中数学 > 题目详情
如图⑴,在△ABC中,AB=AC,∠A=36°.
(1)直接写出∠ABC的度数;
(2)如图⑵,BD是△ABC中∠ABC的平分线.
①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程;
②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图⑶中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.
解:(1)∠ABC=72 o
(2)①如图⑵,△ADB、△BCD是等腰三角形.
说明△ADB是等腰三角形,理由:由(1)得:∠ABC=72 o
又∵BD是∠ABC的平分线,
∴∠ABD=∠ABC=36 o
又∵∠A=36o
∴∠A=∠ABD,
∴AD=BD,即△ADB是等腰三角形
 ②存在3个点P,使得△CDP是等腰三角形.在图上正确画出一点即可,
等腰三角形CDP,当以∠CDP 为顶角,CD为一腰时,∠CPD=72 o
当以∠DCP为顶角 ,CD为一腰时,存在两点P:一点在线段BC延长线上,此时∠CPD=36 o
一点在线段BC上,此时∠CPD=54 o
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)当∠BAC=90°时,求证:
PE
CE
=
1
2

(3)如图2,当PC是圆O的切线,E为AD中点,BC=8,求AD的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说精英家教网明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>
BC2+CD2

(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=
DE
BD
.如图2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.
(1)求证:∠AOC=90°+
12
∠ABC;
(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案