精英家教网 > 初中数学 > 题目详情
已知:在四边形ABCD中,∠BAD=60°,AB=AD,AC=20.
(1)若∠B=∠D=90°,如图1,则四边形ABCD的面积是
100
3
100
3

(2)若∠B+∠D=180°,如图2,求四边形ABCD的面积.
分析:(1)由于∠B=∠D=90,AB=AD,AC为公共边,利用“HL”可证明Rt△ABC≌Rt△ADC,则∠BAC=∠DAC=30°,根据含30°的直角三角形三边的关系得到BC=
1
2
AC=10,AB=
3
BC=10
3
,然后根据
S四边形ABCD=2S△ABC进行计算即可;
(2)由于∠BAD=60°,AB=AD,则可把△ADC绕点A逆时针旋转60°得到△ABD′,根据旋转的性质得到∠ABC′=∠D,AC′=AC,∠C′AC=60°,而∠ABC+∠D=180°,则∠ABC+∠ABC′=180°,
得到C′点在CB的延长线上,所以△ACC′为等边三角形,然后利用S四边形ABCD=S△AC′C=
3
4
AC2进行计算即可.
解答:解:(1)∵∠B=∠D=90°
在RtABC和Rt△ADC中,
AB=AD
AC=AC

∴Rt△ABC≌Rt△ADC(HL),
∴∠BAC=∠DAC,
而∠BAD=60°,
∴∠BAC=30°,
∴BC=
1
2
AC=10,AB=
3
BC=10
3

∴S四边形ABCD=2S△ABC=2×
1
2
×10×10
3
=100
3

故答案为100
3


(2)如图,∵∠BAD=60°,AB=AD,
∴把△ADC绕点A逆时针旋转60°得到△ABC′,
∴∠ABC′=∠D,AC′=AC,∠C′AC=60°
∵∠ABC+∠D=180°,
∴∠ABC+∠ABC′=180°,
∴C′点在CB的延长线上,
而AC′=AC,∠C′AC=60°,
∴△ACC′为等边三角形,
∴S四边形ABCD=S△AC′C=
3
4
AC2=
3
4
×400=100
3
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30°的直角三角形三边的关系与等边三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、(1)如图1,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.
①请你判断△ABC与△ABD的面积具有怎样的关系?
②若点D在直线m上可以任意移动,△ABD的面积是否发生变化?并说明你的理由.
(2)如图2,已知:在四边形ABCD中,连接AC,过点D作EF∥AC,P为EF上任意一点(与点D不重合).请你说明四边形ABCD的面积与四边形ABCP的面积相等.
(3)如图3是一块五边形花坛的示意图.为了使其更规整一些,园林管理人员准备将其修整为四边形,根据花坛周边的情况,计划在BC的延长线上取一点F,沿EF取直,构成新的四边形ABFE,并使得四边形ABFE的面积与五边形ABCDE的面积相等.请你在图3中画出符合要求的四边形ABFE,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,⊙O与斜边AC交于点D,E为BC边的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,若四边形AOED是平行四边形,求∠CAB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,在等腰△ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠BCA=90°,AC=3,BC=4,CD是斜边AB边上的高,点E、F分别是AC、BC边上的动点,连接DE、DF、EF,且∠EDF=90°.

(1)当四边形CEDF是矩形时(如图1),试求EF的长并直接判断△DEF与△DAC是否相似.
(2)在点E、F运动过程中(如图2),△DEF与△DAC相似吗?请说明理由;
(3)设直线DF与直线AC相交于点G,△EFG能否为等腰三角形?若能,请直接写出线段AE的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在四边形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD=4cm,∠ABC=∠DCB,求BC的长.

查看答案和解析>>

同步练习册答案