【题目】在中, , 记,点为射线上的动点,连接,将射线绕点顺时针旋转角后得到射线,过点作的垂线,与射线交于点,点关于点的对称点为,连接.
(1)当为等边三角形时,
① 依题意补全图1;
②的长为________;
(2)如图2,当,且时, 求证:;
(3)设, 当时,直接写出的长. (用含的代数式表示)
【答案】(1)①见解析,②. (2)见解析;(3).
【解析】
(1)①根据题意补全图形即可;
②根据旋转的性质和对称的性质易证得,利用特殊角的三角函数值即可求得答案;
(2)作于,于,证得四边形是矩形,求得,再证得,求得,再求得,即可证得结论.
(3)设则,证得,求得,再作DM⊥AB,PN⊥DQ,利用面积法求得,继而求得,再证得,求得,根据得,即可求得答案.
(1)解:①补全图形如图所示:
②∵为等边三角形,
∴,,
根据旋转的性质和对称的性质知:,,
∴,,
在和中,,
∴,
∴,
∵为等边三角形,,
∴,
在中,,
∴,
∴.
(2)作于,于,
∵,
∴,
由题意可知,
∴,
∴,
∴,
∴,
∵,
∴,
∴四边形是矩形,
∴,
∵,
∴,
∴,
又∵,
∴,
∴,
∴,
∵,关于点对称,
∴,,
∴,
∴为中点,
∴垂直平分,
∴;
(3)∵,AC⊥BD,
∴,
设则,
∵AC⊥BD,AP⊥AD,
∴∠ACB=∠PAD,
又∵∠ABC=∠PDA,
∴,
∴,
∴,
∴,
作DM⊥AB,PN⊥DQ,
∵,
∴,
∵,
∴,
∴,
∵,
又∵∠AB=∠PDA,
∴,
∴,
∴,
∴,
∵,
∴,
解得:,
∴.
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是( )
A.AC∥ODB.
C.△ODE∽△ADOD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象和轴交于点、,与轴交于点,点是直线上方的抛物线上的动点.
(1)求直线的解析式.
(2)当是抛物线顶点时,求面积.
(3)在点运动过程中,求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“红灯停,绿灯行”是我们过路口遇见交通信号灯时必须遵守的规则.小明每天从家骑自行车上学要经过三个路口,假如每个路口交通信号灯中红灯和绿灯亮的时间相同,且每个路口的交通信号灯只安装了红灯和绿灯.那么某天小明从家骑车去学校上学,经过三个路口抬头看到交通信号灯.
(1)请画树状图,列举小明看到交通信号灯可能出现的所有情况;
(2)求小明途经三个路口都遇到红灯的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴是的抛物线与轴交于两点,与轴交于点,
求抛物线的函数表达式;
若点是直线下方的抛物线上的动点,求的面积的最大值;
若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;
在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com