【题目】如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是( )
A.AC∥ODB.
C.△ODE∽△ADOD.
【答案】A
【解析】
A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;
C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.
解:解:A.∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO= ∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴A正确.
B.如图,过点E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于点D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴B错误.
C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能证明△ODE和△ADO相似,
∴C错误;
D.∵AD平分∠CAB交于点D,
∴∠CAD=∠BAD.
∴CD=BD
∴BC<CD+BD=2CD,
∵半径OC⊥AB于O,
∴AC=BC,
∴AC<2CD,
∴D错误.
故选A.
科目:初中数学 来源: 题型:
【题目】某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)的关系符合一次函数.
直接写出销售单价的取值范围,
若销售该服装获得利润为元,试写出利润与销售单价之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点的坐标分别为A(2,2),B(1,0),C(3,1).
(1)画出△ABC关于x轴对称的△A1BC1,写出点C1的坐标为 ;
(2)画出△ABC绕原点O逆时针旋转90°的△A2B1C2,写出点C2的坐标为 ;
(3)在(1),(2)的基础上,图中的△A1BC1、△A2B1C2关于点 中心对称;
(4)若以点D、A、C、B为顶点的四边形为菱形,直接写出点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③a﹣b+c>0;④当x≠1时,a+b>ax2+bx;⑤4ac<b2.其中正确的有( )个
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P是抛物线上的动点,且满足S△PAO=2S△PCO,求出P点的坐标;
(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).
(1)求抛物线的顶点P的坐标(用含a的代数式表示);
(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.
①当时,请直接写出“W区域”内的整点个数;
②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,BA=BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)若BC=2,BE=4,求⊙O半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中, , 记,点为射线上的动点,连接,将射线绕点顺时针旋转角后得到射线,过点作的垂线,与射线交于点,点关于点的对称点为,连接.
(1)当为等边三角形时,
① 依题意补全图1;
②的长为________;
(2)如图2,当,且时, 求证:;
(3)设, 当时,直接写出的长. (用含的代数式表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com