精英家教网 > 初中数学 > 题目详情
14.如果$\sqrt{4xy}$=2$\sqrt{x}$•$\sqrt{y}$成立,那么x,y必须满足条件x≥0,y≥0.

分析 直接利用二次根式的定义分析得出答案.

解答 解:∵$\sqrt{4xy}$=2$\sqrt{x}$•$\sqrt{y}$成立,
∴x≥0,y≥0.
故答案为:x≥0,y≥0.

点评 此题主要考查了二次根式的定义,正确把握定义是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.不等式|3x-1|≤5的解集是-$\frac{4}{3}$≤x≤2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.某商场今年五月份的销售额是270万元,比去年五月份销售额的2倍少60万元.设该商场去年五月份的销售额为x万元,那么今年五月份的销售额用x可表示为2x-60万元.根据题意,可列方程2x-60=270.解方程,得该商场去年五月份的销售额是165万元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若一次函数y=(m+1)x+3-m的图象经过一、二、三象限,则m的取值范围是-1<m<3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,直线y=kx+2与x轴、y轴分别于A,B两点,其中$\frac{OB}{OA}$=$\frac{1}{2}$,点C,D分别为直线l:y=$\frac{1}{2}$x+1与x轴、y轴的交点.
(1)求A点的坐标和k的值;
(2)在直线l上存在一点P,使得S△AOB=$\frac{2}{3}$S△APB,求点P的坐标.
(3)点M是直线l上的一个动点,那么在x轴上是否存在点N,使得△MON为等腰直角三角形?若存在,请直接写出点M以及对应的点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如果$\sqrt{\frac{n}{m}}$是二次根式,那么m,n应该满足条件(  )
A.mn>0B.m>0,n≥0C.m≥0,n>0D.mn≥0且m≠0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列从左到右的变形中,不是因式分解的是(  )
A.-3x2+6xy=-3x(x-2y)B.a2+2ab=a(a+2b)
C.ab-a-b+1=(a-1)(b-1)D.a2+2a-3=a(a+2-$\frac{3}{a}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,抛物线y=-x2-2x+3与轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点.
(1)求直线AC的解析式,并直接写出D点的坐标.
(2)如图1,在直线AC的上方抛物线上有一动点P,过P点作PQ垂直于x轴交AC于点Q,PM∥BD交AC于点M.
①求△PQM周长最大值;
②当△PQM周长取得最大值时,PQ与x轴交点为H,首位顺次连接P、H、O、D构成四边形,它的周长为L,若线段OH在x轴上移动,求L最小值时OH移动的距离及L的最小值.
(3)如图2,连接BD与y轴于点F,将△BOF绕点O逆时针旋转,记旋转后的三角形为△BOF′,B′F′所在直线与直线AC、直线OC分别交于点G、K,当△CGK为直角三角形时,直接写出线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,经过点A(0,-4)的抛物线y=$\frac{1}{2}$x2+bx+c与x轴相交于点B(-1,0)和C,O为坐标原点.

(1)求抛物线的解析式;
(2)将抛物线y=$\frac{1}{2}$x2+bx+c向上平移$\frac{7}{2}$个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k与图象C始终有3个交点,求满足条件的k的取值范围.

查看答案和解析>>

同步练习册答案