精英家教网 > 初中数学 > 题目详情

【题目】如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.
(3)若⊙P与线段QC只有一个公共点,求t的取值范围.

【答案】
(1)

解:∵OA=6,OB=8,

∴由勾股定理可求得:AB=10,

由题意知:OQ=AP=t,

∴AC=2t,

∵AC是⊙P的直径,

∴∠CDA=90°,

∴CD∥OB,

∴△ACD∽△ABO,

∴AD=

当Q与D重合时,

AD+OQ=OA,

+t=6,

∴t=


(2)

解:当⊙Q经过A点时,如图1,

OQ=OA﹣QA=4,

∴t= =4s,

∴PA=4,

∴BP=AB﹣PA=6,

过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,

连接PF,

∴PE∥OA,

∴△PEB∽△AOB,

∴PE=

∴由勾股定理可求得:EF=

由垂径定理可求知:FG=2EF=


(3)

解:当QC与⊙P相切时,如图2,

此时∠QCA=90°,

∵OQ=AP=t,

∴AQ=6﹣t,AC=2t,

∵∠A=∠A,

∠QCA=∠ABO,

∴△AQC∽△ABO,

∴t=

∴当0<t≤ 时,⊙P与QC只有一个交点,

当QC⊥OA时,

此时Q与D重合,

由(1)可知:t=

∴当 <t≤5时,⊙P与QC只有一个交点,

综上所述,当,⊙P与QC只有一个交点,t的取值范围为:0<t≤ <t≤5.


【解析】(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;    (2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;
    (3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.本题考查圆的综合问题,涉及圆的切线判定,圆周角定理,相似三角形的判定与性质,学生需要根据题意画出相应的图形来分析,并且能综合运用所学知识进行解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )

①四边形A2B2C2D2是矩形;

②四边形A4B4C4D4是菱形;

③四边形A5B5C5D5的周长是

④四边形AnBnCnDn的面积是

A. ①②③ B. ②③④ C. ①② D. ②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是(  )

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.当a= 时,△ABD是等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们,我们很熟悉这样的算式:,其实,数学不仅非常美妙,而且魅力无穷.请你欣赏下列一组等式:

⑤……

(1)写出第个等式:

(2)根据上述规律,写出第个等式:

(3)观察比较,并大胆猜想:

(4)根据(2)的规律计算(写出计算过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
(1)求每吨水的政府补贴优惠价和市场价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小明家5月份用水26吨,则他家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1 , 0)、B(x2 , 0)两点,则 的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140  146  143  175  125 164  134  155  152  168  162  148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?

查看答案和解析>>

同步练习册答案