精英家教网 > 初中数学 > 题目详情

已知-数学公式,可求得x=________,这是根据________.

??    等式的性质2
分析:根据等式的基本性质2可知:由-,可求得x=-
解答:根据等式的基本性质2,-两边都乘以-,可求得x=-
点评:主要考查了等式的基本性质.
等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;
2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

课本中有这么一个例题:“如图,河对岸有一水塔AB.在C处测得塔顶A的仰角为30°,向塔前进12米到达D,在D处测得A的仰角为45°,求水塔AB的高”.
解这个题时,我们通常时这样去想的(分析):要求水塔AB的高,只要去寻找AB于已知量之间的关系.在这里,由于难以找到四个量之间的直接关系,我们可精英家教网引进一个或两个中间量.以此作为媒介,再寻找这些量之间的关系,得到.于是,就可求得水塔的高,问题就解决了.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.
(1)根据题目所提供的信息,可求得b=
 
,a=
 
,m=
 

(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;
(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某工厂生产A、B两种型号的帐篷,已知A型帐篷40顶和B型帐篷20顶共重2180kg,A型帐篷10顶和B型帐篷60顶共重2580kg,且每种型号的帐篷都是由防雨布和钢材两种材料制成的.
(1)求A、B两种型号的帐篷每顶各重多少kg,并根据求得的结果把下表中的空格填上.
防雨布 钢材
每顶A型帐篷所需材料 20kg
每顶B型帐篷所需材料 12kg
(2)汶川发生特大地震灾害后,该工厂立即用现有的45吨防雨布和28.5吨钢材突击赶制上述两种规格的帐篷2000顶,送往灾区供灾民居住.若设生产A型帐篷x顶
①求x的取值范围,并说明共有多少种生产方案.
②若每顶A型帐篷可解决10个灾民的居住问题,每顶B型帐篷可解决12个灾民的居住问题,问如何安排生产可最大限度地解决灾民居住问题,最多可解决多少个灾民的居住问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青田县模拟)为了探索代数式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
CE=
(8-x)2+25
,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此时x=
4
3
4
3

(2)请你根据上述的方法和结论,试构图求出代数式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案