精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtΔABC中,∠C=90°BAC的角平分线ADBC边于D,以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D,与AB边的另一个交点为E.

(1)判断直线BC与⊙O的位置关系,并说明理由;

(2)若⊙O的半径为4B=30°.求线段BDBE与劣弧DE所围成的阴影部分的图形面积.

【答案】1)相切,理由见解析;(2)(2.

【解析】试题分析:(1)连接OD,根据平行线判定推出ODAC,推出ODBC,根据切线的判定推出即可;

2)根据S阴影=SBOD-S扇形DOE求得即可.

试题解析:(1)直线BC与⊙O相切;
连结OD

OA=OD
∴∠OAD=ODA
∵∠BAC的角平分线ADBC边于D
∴∠CAD=OAD
∴∠CAD=ODA
ODAC
∴∠ODB=C=90°
ODBC
又∵直线BC过半径OD的外端,
∴直线BC与⊙O相切.

2)在RtACB中,∠B=30°
∴∠BOD=60°

∵∠B=30°ODBC
OB=2OD
OD=4

OB=8
BD=4

SBOD=×ODBD=8
∴所求图形面积为=8-

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E,F在对角线AC上,且AE=CF.求证:

(1)DE=BF;

(2)四边形DEBF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )

A B C D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接中国森博会,某商家计划从厂家采购AB两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.

采购数量(件)

1

2

A产品单价(元/件)

1480

1460

B产品单价(元/件)

1290

1280

1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1x的关系式;

2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;

3)该商家分别以1760/件和1700/件的销售单价售出AB两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(a+b)x2+2cx+(b-a)=0,其中abc分别为三边的长.

(1)如果是方程的根,试判断的形状,并说明理由.

(2)如果方程有两个相等的实数根,试判断的形状,并说明理由.

(3)如果是等边三角形,试求这个一元二次方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)

1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?

2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?

(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么丽商场至少需购进多少件A种商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示.以下说法正确的是(

A.加油前油箱中剩余油量(升)与行驶时间(小时)的函数关系是

B.途中加油30

C.汽车加油后还可行驶375小时

D.汽车到达乙地时油箱中还余油9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在的正方形网格中,从点出发的四条线段,它的另一个端点均在格点上(正方形网格的交点).

1)若每个小正方形的边长都是1,分别求出的长度(结果保留根号).

2)在四条线段中,是否存在三条线段,它们能构成直角三角形?如果存在,请指出是哪三条线段,并说明理由.

查看答案和解析>>

同步练习册答案