【题目】如图,在RtΔABC中,∠C=90°,∠BAC的角平分线AD交BC边于D,以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D,与AB边的另一个交点为E.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为4,∠B=30°.求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.
【答案】(1)相切,理由见解析;(2)(2).
【解析】试题分析:(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;
(2)根据S阴影=S△BOD-S扇形DOE求得即可.
试题解析:(1)直线BC与⊙O相切;
连结OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠BAC的角平分线AD交BC边于D,
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴OD∥AC,
∴∠ODB=∠C=90°,
即OD⊥BC.
又∵直线BC过半径OD的外端,
∴直线BC与⊙O相切.
(2)在Rt△ACB中,∠B=30°,
∴∠BOD=60°.
∴.
∵∠B=30°,OD⊥BC,
∴OB=2OD,
∵OD=4
∴OB=8,
∴BD=4
S△BOD=×ODBD=8,
∴所求图形面积为=8- .
科目:初中数学 来源: 题型:
【题目】为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.
采购数量(件) | 1 | 2 | … |
A产品单价(元/件) | 1480 | 1460 | … |
B产品单价(元/件) | 1290 | 1280 | … |
(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a+b)x2+2cx+(b-a)=0,其中a、b、c分别为三边的长.
(1)如果是方程的根,试判断的形状,并说明理由.
(2)如果方程有两个相等的实数根,试判断的形状,并说明理由.
(3)如果是等边三角形,试求这个一元二次方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示.以下说法正确的是( )
A.加油前油箱中剩余油量(升)与行驶时间(小时)的函数关系是
B.途中加油30升
C.汽车加油后还可行驶3.75小时
D.汽车到达乙地时油箱中还余油9升
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在的正方形网格中,从点出发的四条线段,,,,它的另一个端点,,,均在格点上(正方形网格的交点).
(1)若每个小正方形的边长都是1,分别求出,,,的长度(结果保留根号).
(2)在,,,四条线段中,是否存在三条线段,它们能构成直角三角形?如果存在,请指出是哪三条线段,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com