精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在的正方形网格中,从点出发的四条线段,它的另一个端点均在格点上(正方形网格的交点).

1)若每个小正方形的边长都是1,分别求出的长度(结果保留根号).

2)在四条线段中,是否存在三条线段,它们能构成直角三角形?如果存在,请指出是哪三条线段,并说明理由.

【答案】1;(2)存在,线段ABACAD可以构成直角三角形,理由见解析.

【解析】

1)在直角三角形中,利用勾股定理可求解各条线段的长度即可;

2)由勾股定理逆定理可知,三角形两边的平方和等于第三边的平方,则这个三角形为直角三角形,由此可判断是否存在直角三角形.

1

2)存在,线段ABACAD可以构成直角三角形,

理由为:满足勾股定理,

∴线段ABACAD可以构成直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtΔABC中,∠C=90°BAC的角平分线ADBC边于D,以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D,与AB边的另一个交点为E.

(1)判断直线BC与⊙O的位置关系,并说明理由;

(2)若⊙O的半径为4B=30°.求线段BDBE与劣弧DE所围成的阴影部分的图形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】618日晚,苏宁易购发布618全程战报:从61日到18日晚6点,苏宁依托线上线下全场景优势,逆势增长.经调查,苏宁易购线上有甲乙两家在销售华为A手机、华为B电脑和华为C耳机.已知每部A手机的利润率为40%,每台B电脑的利润率为60%,每副C耳机的利润率为30%,甲商家售出的B电脑和C耳机的数量都是A手机的数量的一半,获得的总利润为50%,乙商家售出的A手机的数量是B电脑的数量的一半,售出的C耳机的数量是B电脑的数量的,则乙商家获得的总利润率是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形A`B`C`是由三角形ABC经过某种平移得到的,点A与点A`,点B与点B`,点C与点C`分别对应,观察点与点坐标之间的关系,解答下列问题:

分别写出点A、点B、点C、点A`、点B`、点C`的坐标,并说明三角形A`B`C`是由三角形ABC经过怎样的平移得到的.

若点是点通过中的平移变换得到的,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,∠175°,∠2105°,∠C=∠D.判断 A F的大小关系,并说明理由.

2)对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:.

解:把②代入①得,解得代入②得,

所以方程组的解为

请用同样的方法解方程组:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac02ab04a-2bc=0abc=-123.其中正确的是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究并解决问题:

探究

倍延三角形的一条中线,我们可以发现一些有用的结论.

已知,如图①所示,ADABC的中线,延长ADE,使AD=DE,连接BECE.

1)求证:ABCE.

2)请再写出两条不同类型的结论.

解决问题

如图所示②,分别以ABC的边ABAC为边,向三角形的外侧作两个等腰直角三角形,AB=AD,AC=AE,BAD = CAE=90°,点MBC的中点,连接DE,AM,试问线段AMDE之间存在什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《函数的图象与性质》拓展学习片段展示:

【问题】

如图①,在平面直角坐标系中,抛物线y=a(x-2)2-4经过原点O,与x轴的另一个交点为A,则a= ,点A的坐标为

【操作】

将图①中的抛物线在x轴下方的部分沿x轴翻折到x轴上方,如图②.直接写出翻折后的这部分抛物线对应的函数解析式:

【探究】

在图②中,翻折后的这部分图象与原抛物线剩余部分的图象组成了一个“W”形状的新图象,则新图象对应的函数yx的增大而增大时,x的取值范围是

【应用】结合上面的操作与探究,继续思考:

如图③,若抛物线y=(x-h)2-4x轴交于AB两点(AB左),将抛物线在x轴下方的部分沿x轴翻折,同样,也得到了一个“W”形状的新图象

1)求AB两点的坐标;(用含h的式子表示)

2)当1x2时,若新图象的函数值yx的增大而增大,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,AB=2,B=60°,MAB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示yx的函数关系的图象大致为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案