精英家教网 > 初中数学 > 题目详情
(2010•防城港)某校举行“环保知识竞赛”,如图所示为0701班学生的成绩制成的频率分布表.
(1)求0701班的总人数及a,b,c的值;
(2)学校划定成绩不低于70分的学生将获得一等奖或二等奖.一等奖奖励笔记本5本及奖金30元,二等奖奖励笔记本3本及奖金20元.已知这部分学生共获得奖金750元,求这部分学生共获得笔记本数.
分数段 频数 频率 
 50≤x<60 5 0.10
 60≤x<70 a 0.30
 70≤x<80 15 b
 80≤x<90 c 0.20
 90≤x≤100 5 0.10

【答案】分析:(1)0701班的总人数可以用5÷0.1即可求出,然后用总人数乘以所有未知频数的小组的频率即可求出a、c,再利用所有频率之和为1即可求出b;
(2)根据(1)可以得到不低于70分的学生有30人,设获得一等奖的人数为x人,那么获得二等奖人数为(30-x)人,根据部分学生共获得奖金750元即可列出方程,解方程求出获得一、二等奖的人数,然后就可以求出这部分学生共获得笔记本数.
解答:解:(1)0701班的总人数可以用5÷0.1=50人,
∴a=50×0.30=15人,
b=15÷50=0.3,
c=50×0.20=10人;

(2)根据(1)可以得到不低于70分的学生有15+10+5=30人,
设获得一等奖的人数为x人,那么获得二等奖人数为(30-x)人,
∴30x+20(30-x)=750,
∴x=15,
∴30-x=15,
∴15×5+15×3=120,
∴这部分学生共获得笔记本120本.
点评:此题首先考查了读频数分布直方图的能力和利用直方图获取信息的能力,然后根据表中信息和已知条件列出方程解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•防城港)已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,且A(-1,0),点B在x轴的正半轴上,OC=3OA(O为坐标原点).
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为边的平行四边形面积是△AEP面积的2倍,另两顶点钟有一顶点Q在抛物线上,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年广西玉林市中考数学试卷(解析版) 题型:解答题

(2010•防城港)已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,且A(-1,0),点B在x轴的正半轴上,OC=3OA(O为坐标原点).
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为边的平行四边形面积是△AEP面积的2倍,另两顶点钟有一顶点Q在抛物线上,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年广西防城港市中考数学试卷(解析版) 题型:解答题

(2010•防城港)已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,且A(-1,0),点B在x轴的正半轴上,OC=3OA(O为坐标原点).
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为边的平行四边形面积是△AEP面积的2倍,另两顶点钟有一顶点Q在抛物线上,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《图形的旋转》(01)(解析版) 题型:选择题

(2010•防城港)下列图形中既是轴对称图形,又是中心对称图形的是( )
A.等边三角形
B.平行四边形
C.菱形
D.等腰梯形

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《概率》(02)(解析版) 题型:选择题

(2010•防城港)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则( )
A.p1<p2
B.p1>p2
C.p1=p2
D.不能确定

查看答案和解析>>

同步练习册答案