精英家教网 > 初中数学 > 题目详情
已知抛物线y=
1
2
x2+x-
5
2

(1)用配方法求抛物线的顶点坐标.
(2)x取何值时,y随x的增大而减大.
(3)若抛物线与x轴的两个交点为A、B,与y轴的交点为C,求S△ABC
分析:(1)利用完全平方式将
1
2
x2+x-
5
2
化为完全平方的形式;
(2)判断出函数的开口方向,找到函数的对称轴即可判断函数的增减性;
(3)令y=0,建立关于x的方程,求出x的值即为函数与x轴交点的横坐标,从而得到函数与x轴的两个交点,进而求出函数解析式.
解答:解:(1)∵y=
1
2
x2+x-
5
2

=
1
2
(x2+2x)-
5
2

=
1
2
(x2+2x+1-1)-
5
2

=
1
2
(x2+2x+1)-
1
2
-
5
2

=
1
2
(x+1)2-3,
∴抛物线的顶点坐标为(-1,-3).

(2)由于抛物线开口向上,对称轴为x=-1,
可见,当x<-1时,y随x的增大而减小.
(3)令y=0,
1
2
x2+x-
5
2
=0时,
解得x1=
6
-1,x2=-
6
-1,
∴AB=2
6

又∵C点坐标为(0,-
5
2
),
∴S△ABC=
1
2
×2
6
×
5
2
=
5
6
2
点评:本题考查了二次函数的性质、抛物线与x轴的交点,熟悉函数与方程的关系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直线y=-
12
x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y轴上,M为抛物线的顶点.
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的 函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三精英家教网角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=ax2+c与x轴交于A、B两点,与y轴交于C点,直线y=
12
x-2经过点B及OC中点E.求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y=-
1
2
x+1
分别交y轴、x轴于A,B两点,以线段AB为边向上作正方形ABCD过点A,D,C的抛物线y=ax2+bx+1与直线的另一交点为点E
(1)点C的坐标为
 
;点D的坐标为
 
.并求出抛物线的解析式;
(2)若正方形以每秒
5
个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线y=-
12
x+1
交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:022

已知抛物线+12x-19的顶点的横坐标是3,则a=________.

查看答案和解析>>

同步练习册答案