精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线分别是直线上的点.

1)在图1中,判断之间的数量关系,并证明你的结论;

2)在图2中,请你直接写出之间的数量关系(不需要证明);

3)在图3中,平分平分,且,求的度数.

【答案】1,证明见析;(2;(3

【解析】

(1)如图,过点作直线,由平行线的性质得到,即可求得

(2)如图,记ABNE的交点为G,由平行线的性质得∠EGM=∠DNE,由三角形外角性质得∠BME=∠MEN+∠EGM,由此即可得到结论;

(3)由角平分线的定义设,设,由(1),得,由(2),得,再根据,可求得,继而可求得.

(1),证明如下:

如图,过点作直线

(2),理由如下:

如图,记ABNE的交点为G

∵AB//CD

∴∠EGM=∠DNE

∠BME△EMG的外角,

BME=∠MEN+∠EGM

∴∠MEN=∠BME-∠DNE

(3)∵平分

平分

(1),得

(2),得

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一副三角板如图摆放,点F 45°角三角板ABC的斜边的中点,AC4.当 30°角三角板DEF的直角顶点绕着点F旋转时,直角边DFEF分别与ACBC相交于点 M N.在旋转过程中有以下结论:①MFNF;②CFMN可能相等吗;③MN 长度的最小值为 2;④四边形CMFN的面积保持不变; CMN面积的最大值为 2.其中正确的个数是_________.(填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高饮水质量,越来越多的居民选购家用净水器.我市飞龙商场抓住商机,从厂家购进了AB两种型号家用净水器共100台,A型号家用净水器进价是150/台,B型号家用净水器进价是250/台,购进两种型号的家用净水器共用去19000 .

(1)AB两种型号家用净水器各购进了多少台;

(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元? (注: 毛利润=售价一进价) .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:∠MON=30°,点A1A2A3 在射线ON上,点B1B2B3在射线OM上,△A1B1A2△A2B2A3△A3B3A4均为等边三角形,若OA1=a,则△A6B6A7的边长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

原题:如图1,点EF分别在正方形ABCD的边BCCD上,EAF=45°,连接EF,则EFBEDF,试说明理由.

(1)思路梳理

ABCD

ABE绕点A逆时针旋转90°ADG,可使ABAD重合.

∵∠ADCB=90°

∴∠FDG=180°,点FDG共线.

根据___________,SAS

易证AFG___________AEF

,得EFBEDF

(2)类比引申

如图2,四边形ABCD中,ABADBAD=90°.点EF分别在边BCCD上,EAF=45°.若BD都不是直角,则当BD满足等量关系______________B+D=180°

时,仍有EFBEDF

(3)联想拓展

如图3,在ABC中,BAC=90°ABAC,点DE均在边BC上,且DAE=45°.猜想BDDEEC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把的圆心角所对的弧叫做的弧,则圆心角AOB的度数等于它所对的弧AB的度数记为:∠AOB .由此可知:命题圆周角的度数等于其所对的弧的度数的一半.是真命题,请结合图形1给予证明(不要求写已知、求证,只需直接证明),并解决以下的问题(1)和问题(2).

问题(1):如图2O的两条弦ABCD相交于圆内一点P,求证:∠APC (+)

问题(2):如图3O的两条弦ABCD相交于圆外一点P,问题(1)中的结论是否成立,如果成立,给予证明;如果不成立,写出一个类似的结论(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形(四边相等,四个角都是直角),点为边上异于点的一动点,,交于点,点延长线上一定点,满足的延长线与交于点,连接.

(1)判断 三角形.

(2)求证: .

(3)探究是否为定值?如果是定值,请说明理由,并求出该定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.

课外阅读时间t

频数

百分比

10≤t30

4

8%

30≤t50

8

16%

50≤t70

a

40%

70≤t90

16

b

90≤t110

2

4%

合计

50

100%

请根据图表中提供的信息回答下列问题:

1a=   b=   

(2)将频数分布直方图补充完整;

(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠A=90°AB=ACBC=20DEABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DNMEDNME相交于点O.若OMN是直角三角形,则DO的长是______

查看答案和解析>>

同步练习册答案