精英家教网 > 初中数学 > 题目详情

【题目】如图,下列能判定AB∥CD的条件有( )个. 1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.

A.1
B.2
C.3
D.4

【答案】C
【解析】解:(1)利用同旁内角互补判定两直线平行,故(1)正确; 2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;
3)利用内错角相等判定两直线平行,故(3)正确;
4)利用同位角相等判定两直线平行,故(4)正确.
∴正确的为(1)、(3)、(4),共3个;
故选:C.
在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设点A(﹣1y1),B1y2),C2y3)是抛物线y=﹣2(x1)2+m上的三点,则y1y2y3的大小关系正确的是( )

A. y2y3y1B. y1y2y3

C. y3y2y1D. y1y3y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,AB∥CD∥EF,点M、N、P分别在AB、CD、EF上,NQ平分∠MNP.
(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP、∠DNQ的度数;
(2)探求∠DNQ与∠AMN、∠EPN的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a
∵S四边形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
b2+ab=c2+a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为(

A.4
B.8
C.16
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若(1﹣x)13x=1,则x的取值有( )个.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车厂改进生产工艺后每天生产的汽车比原来每天生产的汽车多6那么现在15天的产量就超过了原来20天的产量.若设原来每天能生产x则可列关于x的不等式为(  )

A. 15x>20(x+6) B. 15(x+6)≥20x C. 15x>20( x-6) D. 15(x+6)>20x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若AB∥CD,点P在AB,CD内部,∠B=50°,∠D=30°,求∠BPD.

(2)如图2,将点P移到AB,CD外部,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论.

(3)如图3,写出∠BPD,∠B,∠D,∠BQD之间的数量关系?(不需证明)

(4)如图4,求出∠A+∠B+∠C+∠D+∠E+∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】m是方程2x2+3x10的根,则式子4m2+6m2019的值为_____

查看答案和解析>>

同步练习册答案