【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE,连接OC.
(1)求证:DE是⊙O的切线;
(2)若⊙O半径为4,∠D=30°,求图中阴影部分的面积(结果用含π和根号的式子表示).
【答案】(1)答案见解析;(2)
【解析】试题分析:由OA=OC,根据等腰三角形的性质可得∠OAC=∠OCA .根据角平分线的定义可得∠OAC=∠CAE ,所以∠OCA=∠CAE ,即可判定OC∥AE ,再由AE⊥DE ,即可得∠E =90°=∠OCD,结论得证;(2)在Rt△ODC中,求得OD、CD的长,再由S阴影=S△OCD-S扇形OBC即可求得图中阴影部分的面积.
试题解析:
(1)证明:
∵OA=OC,
∴∠OAC=∠OCA .
∵AC平分∠BAE,
∴∠OAC=∠CAE ,
∴∠OCA=∠CAE ,
∴OC∥AE ,
∴∠OCD=∠E .
∵AE⊥DE ,
∴∠E =90°=∠OCD,
即OC⊥CD ,
∴CD是圆O的切线.
(2)在Rt△ODC中,
∵∠D=30°,OC=4,
∴∠COD=60°,OD=2OC=8
∴,
∴S阴影=S△OCD-S扇形OBC= .
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c.
(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
①求该抛物线的解析式;
②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径, AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连结CD交AB于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是( )
A. 一直减小 B. 一直不变
C. 先变大后变小 D. 先变小后变大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:点A、B、C、D在⊙O上,AB=CD,下列结论:①∠AOC=∠BOD;②∠BOD=2∠BAD;③AC=BD;④∠CAB=∠BDC;⑤∠CAO+∠CDO=180°.其中正确的个数为( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.
(1)请完成以下操作:
①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;
(2)请在(1)的基础上,完成下列填空:⊙D的半径为__________;点(6,–2)在⊙D__________;(填“上”、“内”、“外”)∠ADC的度数为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确结论的有( )
A. ①②③ B. ①③④ C. ③④⑤ D. ②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)求S△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com