精英家教网 > 初中数学 > 题目详情

(8分)如图,在△ABC中,AB=AC,点O为底边上的中点,以点O为圆心,1为半径的半圆与边AB相切于点D

 1.(1)判断直线AC与⊙O的位置关系,并说明理由;

 2.(2)当∠A=60°时,求图中阴影部分的面积.

 

 

1.解:(1)直线AC与⊙O相切.···················································································· 1分

理由是:

连接OD,过点OOEAC,垂足为点E

∵⊙O与边AB相切于点D

ODAB.·················································································································· 2分

AB=AC,点O为底边上的中点,

AO平分∠BAC············································································································· 3分

又∵ODABOEAC

OD= OE······················································································································· 4分

OE是⊙O的半径.

又∵OEAC,∴直线AC与⊙O相切.··········································································· 5分

 

2.(2)∵AO平分∠BAC,且∠BAC=60°,∴∠OAD=OAE=30°,

∴∠AOD=AOE=60°,

在Rt△OAD中,∵tan∠OAD = ,∴AD==,同理可得AE=

∴S四边形ADOE =×OD×AD×2=×1××2=························································· 6分

又∵S扇形形ODE==π·························································································· 7分

∴S阴影= S四边形ADOE -S扇形形ODE=-π.······································································· 8分

 

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案