精英家教网 > 初中数学 > 题目详情
4.近期电视剧《人民的名义》热播,某校“话剧表演”社团在本校学生中开展学生知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“自己看过”,B类表示“听家长讲过”,
C类表示“听同学讲过”,D类表示“不知道”,划分类别后的数据整理如表:
类别ABCD
频数304024b
频率a0.40.240.06
(1)表中的a=0.3b=6;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?

分析 (1)根据B类频数和频率求出总数,再根据频数、频率、总数之间的关系分布进行计算即可;
(2)用类别为B的学生数所占的百分比乘以360°,即可得出答案;
(3)用1000乘以类别为C的人数所占的百分比,即可求出该校学生中类别为C的人数.

解答 解:(1)问卷调查的总人数是:$\frac{40}{0.4}$=100(名),
a=$\frac{30}{100}$=0.3,b=100×0.06=6(名),
故答案为:0.3,6;

(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;

(3)根据题意得:1000×0.24=240(名).
答:该校学生中类别为C的人数约为240名.

点评 此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.将正六边形ABCDEF放入平面直角坐标系xOy后,若点A,B,E的坐标分别为(a,b),(-3,-1),(-a,b),则点D的坐标为(3,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)计算:|1-$\sqrt{3}$|+3tan30°-(2017-π)0-(-$\frac{1}{3}$)-1
(2)已知x、y满足方程组$\left\{\begin{array}{l}{2x-y=1}\\{-x+2y=2}\end{array}\right.$,求代数式$\frac{1}{x-1}$•$\frac{{x}^{2}-1}{x+y}$-$\frac{x}{x+y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若直线y=-2x+b经过点(3,5),则关于x的不等式-2x+b<5的解集是x>3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.抛物线y=x2-2x+k与x轴没有交点,则k的取值范围是k>1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EMN的周长是$\frac{{5\sqrt{2}+\sqrt{10}}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
 x-1 0 1 3
 y-3 1 3 1
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,抛物线y=ax2+bx-3经过点A(2,-3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列运算正确的是(  )
A.3x2+4x2=7x4B.2x3•3x3=6x3C.a÷a-2=a3D.(-$\frac{1}{2}$a2b)3=-$\frac{1}{6}$a6b3

查看答案和解析>>

同步练习册答案