精英家教网 > 初中数学 > 题目详情
10.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.
(1)用含α的式子表示h(不必指出α的取值范围);
(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?

分析 (1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,在Rt△BEH中,根据tan∠BEH=$\frac{BH}{EH}$列出方程即可解决问题.
(2)①求出h的值即可解决问题,②求出∠ACB的大小即可解决问题.

解答 解:(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,
∴EH=AC=30,AH=CE=h,∠BEH=α,
∴BH=30-h,
在Rt△BEH中,tan∠BEH=$\frac{BH}{EH}$,
∴30-h=30tanα,
∴h=30-30tanα.

(2)当α=30°时,h=30-30×$\frac{\sqrt{3}}{3}$≈12.7,
∵12.7÷3=4.2,
∴B点的影子落在乙楼的第五层,
当B点的影子落在乙楼C处时,甲楼的影子刚好不影响乙楼采光,
此时AB=AC=30,△ABC是等腰直角三角形,
∴∠ACB=45°,
∴$\frac{45-30}{15}$=1(小时),
∴从此时起1小时后甲楼的影子刚好不影响乙楼采光.

点评 本题考查解直角三角形,锐角三角函数等知识,解题的关键是记住锐角三角函数的定义,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.过m边形的顶点能作7条对角线,n边形没有对角线,k边形有k条对角线,则(m-k)n=125.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读下面的材料,并解答后面的问题:
$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$
(1)观察上面的等式,请直接写出$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为正整数)的结果$\sqrt{n+1}$-$\sqrt{n}$;
(2)计算($\sqrt{n+1}+\sqrt{n}$)($\sqrt{n+1}-\sqrt{n}$)=1;
(3)请利用上面的规律及解法计算:($\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2017}+\sqrt{2016}}$)($\sqrt{2017}+1$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.因式分解:2m3-8m=2m(m+2)(m-2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.在一次竞赛中共有20道题,每一题答对的5分,答错或不答扣2分,小明分想要超过80分,他至少答对18道题.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=8,∠BCD=120°,求四边形AODE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.小明欲购买A,B两种型号的笔记本共10本(不可购买一种),要求其总价钱不超过60元,已知A型号的单价是5元,B种型号的单价是7元,则购买方案有(  )
A.3种B.4种C.5种D.6种

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.
(1)当α=40°时,求β的度数;
(2)猜想α与β之间的关系,并给予证明.
(3)若点C平分优弧AB,且BC2=3OA2,试求α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.以3和4为两条直角边的直角三角形斜边上中线长为$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案