精英家教网 > 初中数学 > 题目详情

【题目】如图是某学校高中两个班的学生上学时步行、骑车、乘公交、乘私家车人数的扇形统计图,已知乘公交人数是乘私家车人数的2.若步行人数是18人,则下列结论正确的是( )

A. 被调查的学生人数为90

B. 乘私家车的学生人数为9

C. 乘公交车的学生人数为20

D. 骑车的学生人数为16

【答案】B

【解析】

根据步行人数以及所占百分比求出总人数,再求出每一部分的人数进行判断即可.

18÷30%=60(人)

所以被调查的人数为60人,故选项A错误;

骑车的人数=60×25%=15(人),故选项D错误;

60-18-15÷2+1=9(人),所以乘私家车的人数为9人,故选项B正确;

因为乘公交人数是乘私家车人数的2倍,

所以,乘公交人数是9×2=18人,故选项C错误.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′ ,如图①所示,∠BAB′ θ ,我们将这种变换记为n]

1)如图①,对△ABC作变换[60°]得到△AB′C′ ,则:= ;直线BC与直线B′C′所夹的锐角为 度;

2)如图②ABC中,∠BAC=30°ACB=90°,对△ABC作变换n]得到△AB′C′,使点BC在同一直线上,且四边形ABB′C′为矩形,求θn的值;

3)如图③ABC中,AB=ACBAC=36°BC=1,对△ABC作变换n]得到△AB′C′使点BCB′在同一直线上,且四边形ABB′C′为平行四边形,求θn的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正确的结论有( )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列条件之一能使平行四边形ABCD是菱形的为_____________

ACBD;②∠BAD=90°;③AB=BC;④AC=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,作AB边的垂直平分线交直线BCM,交AB于点N

1)如图,若,则=_________度;

2)如图,若,则=_________度;

3)如图,若,则=________度;

4)由问,你能发现∠A有什么关系?写出猜想,并证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.

例:如图①,在ABC中,D为边BC的中点,AEBCE,则线段DE的长叫做边BC的中垂距.

1)设三角形一边的中垂距为dd≥0).若d=0,则这样的三角形一定是________,推断的数学依据是________

2)如图②,在ABC中,∠B=45°AB=BC=8AD为边BC的中线,求边BC的中垂距.

3)如图③,在矩形ABCD中,AB=6AD=4.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求ACF中边AF的中垂距.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是边长为1的等边三角形,是等腰直角三角形,且

1)求的长.

2)连接于点,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BCa.作BC边的三等分点C1,使得CC1BC112,过点C1AC的平行线交AB于点A1,过点A1BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2BC212,过点C2AC的平行线交AB于点A2,过点A2BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC 内任取一点 P (如图①),连接 PBPC,探索∠BPC 与∠A,∠ABP,∠ACP 之间的数量关系,并证明你的结论:当点 P 在△ABC 外部时 (如图②),请直接写出∠BPC 与∠A,∠ ABP,∠ACP 之间的数量关系。

查看答案和解析>>

同步练习册答案