精英家教网 > 初中数学 > 题目详情

如图,已知直线与反比例函数的图象相交于点A(-1,a),并且与x轴相交于点B.

(1)求a的值;

(2)求反比例函数的表达式;

(3)求△AOB的面积.

 

【答案】

(1)a=3;(2)求反比例函数的表达式;(3)△AOB的面积=3.

【解析】

试题分析:(1)直接利用待定系数法把A(﹣2,a)代入函数关系式y=﹣x+4中即可求出a的值;

(2)由(1)得到A点坐标后,设出反比例函数关系式,再把A点坐标代入反比例函数关系式,即可得到答案;

(3)根据题意画出图象,过A点作AD⊥x轴于D,根据A的坐标求出AD的长,再根据B点坐标求出OB的长,根据三角形面积公式即可算出△AOB的面积.

解:(1)将A(-1,a)代入y=-x+4中,

得:a=-(-1)+2  所以a=3

(2)由(1)得:A(-1,3)

将A(-1,3)代入中,得到

即k=-3

所以反比例函数的表达式为:

(3)过A点作AD⊥x轴于D

因为A(-1,3)所以AD=3

在直线y=-x+2中,令y=0,得x=2

所以B(2,0)即OB=2

所以△AOB的面积S=×OB×AD=×2×3=3

考点:反比例函数与一次函数的交点问题.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数y=
k
x
图象上点B处.
(1)求反比函数的解析式;
(2)如图2,直线OB与反比例函数图象交于另一点C,在x轴上是否存在点D,使△DBC是等腰三角形?若不存在,请说明不存在的理由;如果存在,请求所有符合条件的点D的坐标;
(3)如图3,直线y=-x+
2
与x轴、y轴分别交于点E、F,点P为反比例函数在第一象限图象上一动点,PG⊥x轴于G,交线段EF于M,PH⊥y轴于H,交线段EF于N.当点P运动时,∠MON的度数是否改变?如果改变,试说明理由;如果不变,请求其度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数数学公式图象上点B处.
(1)求反比函数的解析式;
(2)如图2,直线OB与反比例函数图象交于另一点C,在x轴上是否存在点D,使△DBC是等腰三角形?若不存在,请说明不存在的理由;如果存在,请求所有符合条件的点D的坐标;
(3)如图3,直线数学公式与x轴、y轴分别交于点E、F,点P为反比例函数在第一象限图象上一动点,PG⊥x轴于G,交线段EF于M,PH⊥y轴于H,交线段EF于N.当点P运动时,∠MON的度数是否改变?如果改变,试说明理由;如果不变,请求其度数.

查看答案和解析>>

同步练习册答案